Multiple mixing and disjointness for time changes of bounded-type Heisenberg nilflows
[Mélange multiple et disjonction pour les reparamétrisations des flots nilpotents de type borné]
Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 63-91.

Voir la notice de l'article provenant de la source Numdam

We study time changes of bounded type Heisenberg nilflows (ϕ t ) acting on the Heisenberg nilmanifold M. We show that for every positive τW s (M), s>7/2, every non-trivial time change (ϕ t τ ) enjoys the Ratner property. As a consequence, every mixing time change is mixing of all orders. Moreover, we show that for every τW s (M), s>9/2 and every p,q, pq, (ϕ pt τ ) and (ϕ qt τ ) are disjoint. As a consequence, Sarnak conjecture on Möbius disjointness holds for all such time changes.

Nous étudions les reparamétrisations (ϕ t τ ) des flots nilpotents de Heisenberg de type borné sur une variété nilpotente de Heisenberg M. Nous montrons que, pour des fonctions positives τW s (M) (espace de Sobolev) avec s>7/2, toute reparamétrisation non triviale (ϕ t τ ) a la propriété de Ratner. En conséquence, toute reparamétrisation mélangeante est mélangeante de tous les ordres. De plus, nous montrons que pour toutes les fonctions τW s (M), avec s>9/2 et pour tous p,q, pq, les flots (ϕ pt τ ) et (ϕ qt τ ) sont disjoints. Il s’ensuit, en particulier, que la conjecture de Sarnak sur la disjonction de la fonction de Möbius est valable pour toutes ces reparamétrisations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.111
Classification : 37C40, 28D10
Keywords: Nilflows, time-changes, Ratner property, multiple mixing, disjointness
Mots-clés : Flots nilpotents, reparamétrisations, propriété de Ratner

Forni, Giovanni 1 ; Kanigowski, Adam 1

1 Department of Mathematics, University of Maryland 4176 Campus Drive – William E. Kirwan Hall, College Park, MD 20742-4015, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2020__7__63_0,
     author = {Forni, Giovanni and Kanigowski, Adam},
     title = {Multiple mixing and disjointness for time changes of bounded-type {Heisenberg} nilflows},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {63--91},
     publisher = {\'Ecole polytechnique},
     volume = {7},
     year = {2020},
     doi = {10.5802/jep.111},
     zbl = {07128377},
     mrnumber = {4033750},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jep.111/}
}
TY  - JOUR
AU  - Forni, Giovanni
AU  - Kanigowski, Adam
TI  - Multiple mixing and disjointness for time changes of bounded-type Heisenberg nilflows
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2020
SP  - 63
EP  - 91
VL  - 7
PB  - École polytechnique
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jep.111/
DO  - 10.5802/jep.111
LA  - en
ID  - JEP_2020__7__63_0
ER  - 
%0 Journal Article
%A Forni, Giovanni
%A Kanigowski, Adam
%T Multiple mixing and disjointness for time changes of bounded-type Heisenberg nilflows
%J Journal de l’École polytechnique — Mathématiques
%D 2020
%P 63-91
%V 7
%I École polytechnique
%U http://geodesic.mathdoc.fr/articles/10.5802/jep.111/
%R 10.5802/jep.111
%G en
%F JEP_2020__7__63_0
Forni, Giovanni; Kanigowski, Adam. Multiple mixing and disjointness for time changes of bounded-type Heisenberg nilflows. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 63-91. doi : 10.5802/jep.111. http://geodesic.mathdoc.fr/articles/10.5802/jep.111/

[1] Anzai, Hirotada Ergodic skew product transformations on the torus, Osaka J. Math., Volume 3 (1951), pp. 83-99 | Zbl | MR

[2] Auslander, L.; Green, L.; Hahn, F. Flows on homogeneous spaces, Annals of Math. Studies, 53, Princeton University Press, Princeton, NJ, 1963 | Zbl | MR

[3] Avila, Artur; Forni, Giovanni; Ulcigrai, Corinna Mixing for time-changes of Heisenberg nilflows, J. Differential Geom., Volume 89 (2011) no. 3, pp. 369-410 http://projecteuclid.org/euclid.jdg/1335207373 | Zbl | MR | DOI

[4] Avila, Artur; Ravotti, Davide; Forni, Giovanni; Ulcigrai, Corinna Mixing for smooth time-changes of general nilflows, 2019 | arXiv

[5] Bourgain, J.; Sarnak, P.; Ziegler, T. Disjointness of Moebius from horocycle flows, From Fourier analysis and number theory to Radon transforms and geometry (Dev. Math.), Volume 28, Springer, New York, 2013, pp. 67-83 | Zbl | MR | DOI

[6] Fayad, Bassam; Forni, Giovanni; Kanigowski, Adam Lebesgue spectrum of countable multiplicity for conservative flows on the torus, 2016 | arXiv

[7] Fayad, Bassam; Kanigowski, Adam Multiple mixing for a class of conservative surface flows, Invent. Math., Volume 203 (2016) no. 2, pp. 555-614 | MR | Zbl | DOI

[8] Ferenczi, Sébastien; Kułaga-Przymus, Joanna; Lemańczyk, Mariusz Sarnak’s conjecture: what’s new, Ergodic theory and dynamical systems in their interactions with arithmetics and combinatorics (CIRM Jean-Morlet Chair, Fall 2016) (Lect. Notes in Math.), Volume 2213, Springer, Cham, 2018, pp. 163-235 | DOI | MR | Zbl

[9] Flaminio, Livio; Forni, Giovanni Equidistribution of nilflows and applications to theta sums, Ergodic Theory Dynam. Systems, Volume 26 (2006) no. 2, pp. 409-433 | Zbl | MR | DOI

[10] Flaminio, Livio; Forni, Giovanni Orthogonal powers and Möbius conjecture for smooth time changes of horocycle flows, Electron. Res. Announc. Math. Sci., Volume 26 (2019), pp. 16-23 | Zbl

[11] Flaminio, Livio; Frączek, Krzysztof; Kułaga-Przymus, Joanna; Lemańczyk, Mariusz Approximate orthogonality of powers for ergodic affine unipotent diffeomorphisms on nilmanifolds, Studia Math., Volume 244 (2019) no. 1, pp. 43-97 | Zbl | MR | DOI

[12] Forni, Giovanni Effective equidistribution of nilflows and bounds on Weyl sums, Dynamics and analytic number theory (London Math. Soc. Lecture Note Ser.), Volume 437, Cambridge Univ. Press, Cambridge, 2016, pp. 136-188 | DOI | MR | Zbl

[13] Forni, Giovanni; Kanigowski, Adam Time-changes of Heisenberg nilflows, 2017 | arXiv

[14] Forni, Giovanni; Ulcigrai, Corinna Time-changes of horocycle flows, J. Modern Dyn., Volume 6 (2012) no. 2, pp. 251-273 | Zbl | MR | DOI

[15] Gabriel, P.; Lemańczyk, M.; Schmidt, K. Extensions of cocycles for hyperfinite actions and applications, Monatsh. Math., Volume 123 (1997) no. 3, pp. 209-228 | MR | Zbl | DOI

[16] Glasner, Eli Ergodic theory via joinings, Math. Surveys and Monographs, 101, American Mathematical Society, Providence, RI, 2003 | Zbl | MR | DOI

[17] Green, Ben; Tao, Terence The Möbius function is strongly orthogonal to nilsequences, Ann. of Math. (2), Volume 175 (2012) no. 2, pp. 541-566 | Zbl | DOI

[18] Hasselblatt, Boris; Katok, Anatole Principal structures, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1-203 | Zbl | DOI

[19] Kanigowski, Adam; Kułaga-Przymus, Joanna Ratner’s property and mild mixing for smooth flows on surfaces, Ergodic Theory Dynam. Systems, Volume 36 (2016) no. 8, pp. 2512-2537 | MR | Zbl | DOI

[20] Kanigowski, Adam; Kułaga-Przymus, Joanna; Ulcigrai, Corinna Multiple mixing and parabolic divergence in smooth area-preserving flows on higher genus surfaces, J. Eur. Math. Soc. (JEMS), Volume 21 (2019) no. 12, pp. 3797-3855 | MR | Zbl | DOI

[21] Kanigowski, Adam; Lemańczyk, Mariusz Flows with Ratner’s property have discrete essential centralizer, Studia Math., Volume 237 (2017) no. 2, pp. 185-194 | Zbl | MR | DOI

[22] Kanigowski, Adam; Lemańczyk, Mariusz; Ulcigrai, Corinna On disjointness properties of some parabolic flows, 2018 | arXiv

[23] Kátai, I. A remark on a theorem of H. Daboussi, Acta Math. Hungar., Volume 47 (1986) no. 1-2, pp. 223-225 | Zbl | MR | DOI

[24] Katok, Anatole Combinatorial constructions in ergodic theory and dynamics, University Lect. Series, 30, American Mathematical Society, Providence, RI, 2003 | MR | Zbl | DOI

[25] Ratner, Marina Horocycle flows, joinings and rigidity of products, Ann. of Math. (2), Volume 118 (1983) no. 2, pp. 277-313 | Zbl | MR | DOI

[26] Ratner, Marina Rigid reparametrizations and cohomology for horocycle flows, Invent. Math., Volume 88 (1987) no. 2, pp. 341-374 | MR | Zbl | DOI

[27] Ravotti, Davide Mixing for suspension flows over skew-translations and time-changes of quasi-abelian filiform nilflows, Ergodic Theory Dynam. Systems, Volume 39 (2018) no. 12, pp. 3407-3436 | Zbl | MR | DOI

[28] Sarnak, Peter Three lectures on the Möbius function randomness and dynamics, 2011 (https://publications.ias.edu/sarnak/paper/512)

[29] Tiedra de Aldecoa, Rafael Spectral analysis of time changes of horocycle flows, J. Modern Dyn., Volume 6 (2012) no. 2, pp. 275-285 | Zbl | MR | DOI

[30] Tiedra de Aldecoa, Rafael Commutator methods for the spectral analysis of uniquely ergodic dynamical systems, Ergodic Theory Dynam. Systems, Volume 35 (2015) no. 3, pp. 944-967 | Zbl | MR | DOI

Cité par Sources :