Voir la notice de l'article provenant de la source Numdam
We study time changes of bounded type Heisenberg nilflows acting on the Heisenberg nilmanifold . We show that for every positive , , every non-trivial time change enjoys the Ratner property. As a consequence, every mixing time change is mixing of all orders. Moreover, we show that for every , and every , , and are disjoint. As a consequence, Sarnak conjecture on Möbius disjointness holds for all such time changes.
Nous étudions les reparamétrisations des flots nilpotents de Heisenberg de type borné sur une variété nilpotente de Heisenberg . Nous montrons que, pour des fonctions positives (espace de Sobolev) avec , toute reparamétrisation non triviale a la propriété de Ratner. En conséquence, toute reparamétrisation mélangeante est mélangeante de tous les ordres. De plus, nous montrons que pour toutes les fonctions , avec et pour tous , , les flots et sont disjoints. Il s’ensuit, en particulier, que la conjecture de Sarnak sur la disjonction de la fonction de Möbius est valable pour toutes ces reparamétrisations.
Forni, Giovanni 1 ; Kanigowski, Adam 1
@article{JEP_2020__7__63_0, author = {Forni, Giovanni and Kanigowski, Adam}, title = {Multiple mixing and disjointness for time changes of bounded-type {Heisenberg} nilflows}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {63--91}, publisher = {\'Ecole polytechnique}, volume = {7}, year = {2020}, doi = {10.5802/jep.111}, zbl = {07128377}, mrnumber = {4033750}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/jep.111/} }
TY - JOUR AU - Forni, Giovanni AU - Kanigowski, Adam TI - Multiple mixing and disjointness for time changes of bounded-type Heisenberg nilflows JO - Journal de l’École polytechnique — Mathématiques PY - 2020 SP - 63 EP - 91 VL - 7 PB - École polytechnique UR - http://geodesic.mathdoc.fr/articles/10.5802/jep.111/ DO - 10.5802/jep.111 LA - en ID - JEP_2020__7__63_0 ER -
%0 Journal Article %A Forni, Giovanni %A Kanigowski, Adam %T Multiple mixing and disjointness for time changes of bounded-type Heisenberg nilflows %J Journal de l’École polytechnique — Mathématiques %D 2020 %P 63-91 %V 7 %I École polytechnique %U http://geodesic.mathdoc.fr/articles/10.5802/jep.111/ %R 10.5802/jep.111 %G en %F JEP_2020__7__63_0
Forni, Giovanni; Kanigowski, Adam. Multiple mixing and disjointness for time changes of bounded-type Heisenberg nilflows. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 63-91. doi : 10.5802/jep.111. http://geodesic.mathdoc.fr/articles/10.5802/jep.111/
[1] Ergodic skew product transformations on the torus, Osaka J. Math., Volume 3 (1951), pp. 83-99 | Zbl | MR
[2] Flows on homogeneous spaces, Annals of Math. Studies, 53, Princeton University Press, Princeton, NJ, 1963 | Zbl | MR
[3] Mixing for time-changes of Heisenberg nilflows, J. Differential Geom., Volume 89 (2011) no. 3, pp. 369-410 http://projecteuclid.org/euclid.jdg/1335207373 | Zbl | MR | DOI
[4] Mixing for smooth time-changes of general nilflows, 2019 | arXiv
[5] Disjointness of Moebius from horocycle flows, From Fourier analysis and number theory to Radon transforms and geometry (Dev. Math.), Volume 28, Springer, New York, 2013, pp. 67-83 | Zbl | MR | DOI
[6] Lebesgue spectrum of countable multiplicity for conservative flows on the torus, 2016 | arXiv
[7] Multiple mixing for a class of conservative surface flows, Invent. Math., Volume 203 (2016) no. 2, pp. 555-614 | MR | Zbl | DOI
[8] Sarnak’s conjecture: what’s new, Ergodic theory and dynamical systems in their interactions with arithmetics and combinatorics (CIRM Jean-Morlet Chair, Fall 2016) (Lect. Notes in Math.), Volume 2213, Springer, Cham, 2018, pp. 163-235 | DOI | MR | Zbl
[9] Equidistribution of nilflows and applications to theta sums, Ergodic Theory Dynam. Systems, Volume 26 (2006) no. 2, pp. 409-433 | Zbl | MR | DOI
[10] Orthogonal powers and Möbius conjecture for smooth time changes of horocycle flows, Electron. Res. Announc. Math. Sci., Volume 26 (2019), pp. 16-23 | Zbl
[11] Approximate orthogonality of powers for ergodic affine unipotent diffeomorphisms on nilmanifolds, Studia Math., Volume 244 (2019) no. 1, pp. 43-97 | Zbl | MR | DOI
[12] Effective equidistribution of nilflows and bounds on Weyl sums, Dynamics and analytic number theory (London Math. Soc. Lecture Note Ser.), Volume 437, Cambridge Univ. Press, Cambridge, 2016, pp. 136-188 | DOI | MR | Zbl
[13] Time-changes of Heisenberg nilflows, 2017 | arXiv
[14] Time-changes of horocycle flows, J. Modern Dyn., Volume 6 (2012) no. 2, pp. 251-273 | Zbl | MR | DOI
[15] Extensions of cocycles for hyperfinite actions and applications, Monatsh. Math., Volume 123 (1997) no. 3, pp. 209-228 | MR | Zbl | DOI
[16] Ergodic theory via joinings, Math. Surveys and Monographs, 101, American Mathematical Society, Providence, RI, 2003 | Zbl | MR | DOI
[17] The Möbius function is strongly orthogonal to nilsequences, Ann. of Math. (2), Volume 175 (2012) no. 2, pp. 541-566 | Zbl | DOI
[18] Principal structures, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1-203 | Zbl | DOI
[19] Ratner’s property and mild mixing for smooth flows on surfaces, Ergodic Theory Dynam. Systems, Volume 36 (2016) no. 8, pp. 2512-2537 | MR | Zbl | DOI
[20] Multiple mixing and parabolic divergence in smooth area-preserving flows on higher genus surfaces, J. Eur. Math. Soc. (JEMS), Volume 21 (2019) no. 12, pp. 3797-3855 | MR | Zbl | DOI
[21] Flows with Ratner’s property have discrete essential centralizer, Studia Math., Volume 237 (2017) no. 2, pp. 185-194 | Zbl | MR | DOI
[22] On disjointness properties of some parabolic flows, 2018 | arXiv
[23] A remark on a theorem of H. Daboussi, Acta Math. Hungar., Volume 47 (1986) no. 1-2, pp. 223-225 | Zbl | MR | DOI
[24] Combinatorial constructions in ergodic theory and dynamics, University Lect. Series, 30, American Mathematical Society, Providence, RI, 2003 | MR | Zbl | DOI
[25] Horocycle flows, joinings and rigidity of products, Ann. of Math. (2), Volume 118 (1983) no. 2, pp. 277-313 | Zbl | MR | DOI
[26] Rigid reparametrizations and cohomology for horocycle flows, Invent. Math., Volume 88 (1987) no. 2, pp. 341-374 | MR | Zbl | DOI
[27] Mixing for suspension flows over skew-translations and time-changes of quasi-abelian filiform nilflows, Ergodic Theory Dynam. Systems, Volume 39 (2018) no. 12, pp. 3407-3436 | Zbl | MR | DOI
[28] Three lectures on the Möbius function randomness and dynamics, 2011 (https://publications.ias.edu/sarnak/paper/512)
[29] Spectral analysis of time changes of horocycle flows, J. Modern Dyn., Volume 6 (2012) no. 2, pp. 275-285 | Zbl | MR | DOI
[30] Commutator methods for the spectral analysis of uniquely ergodic dynamical systems, Ergodic Theory Dynam. Systems, Volume 35 (2015) no. 3, pp. 944-967 | Zbl | MR | DOI
Cité par Sources :