Syzygies and logarithmic vector fields along plane curves
[Syzygies et champs de vecteurs logarithmiques le long de courbes planes]
Journal de l’École polytechnique — Mathématiques, Tome 1 (2014), pp. 247-267.

Voir la notice de l'article provenant de la source Numdam

We investigate the relations between the syzygies of the Jacobian ideal of the defining equation for a plane curve C and the stability of the sheaf of logarithmic vector fields along C, the freeness of the divisor C and the Torelli properties of C (in the sense of Dolgachev-Kapranov). We show in particular that curves with a small number of nodes and cusps are Torelli in this sense.

Nous étudions les relations entre les syzygies de l’idéal jacobien associé à l’équation définissant une courbe plane C et la stabilité du faisceau des champs de vecteurs logarithmiques le long de C, la liberté du diviseur C et les propriétés de Torelli de C (au sens de Dolgachev-Kapranov). Nous montrons en particulier que les courbes ayant un petit nombre de points doubles et de cusps ont la propriété de Torelli.

DOI : 10.5802/jep.10
Classification : 14C34, 14H50, 32S05
Keywords: Syzygy, plane curve, logarithmic vector fields, stable bundle, free divisor, Torelli property
Mots-clés : Syzygie, courbe plane, champ de vecteurs logarithmique, fibré stable, diviseur libre, propriété de Torelli

Dimca, Alexandru 1 ; Sernesi, Edoardo 2

1 Université Nice Sophia Antipolis, CNRS, LJAD, UMR 7351 Parc Valrose, 06108 Nice, Cedex 02, France
2 Dipartimento di Matematica e Fisica, Università Roma Tre, Largo S. L. Murialdo 1, 00146 Roma, Italy
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2014__1__247_0,
     author = {Dimca, Alexandru and Sernesi, Edoardo},
     title = {Syzygies and logarithmic vector fields along plane curves},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {247--267},
     publisher = {\'Ecole polytechnique},
     volume = {1},
     year = {2014},
     doi = {10.5802/jep.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jep.10/}
}
TY  - JOUR
AU  - Dimca, Alexandru
AU  - Sernesi, Edoardo
TI  - Syzygies and logarithmic vector fields along plane curves
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2014
SP  - 247
EP  - 267
VL  - 1
PB  - École polytechnique
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jep.10/
DO  - 10.5802/jep.10
LA  - en
ID  - JEP_2014__1__247_0
ER  - 
%0 Journal Article
%A Dimca, Alexandru
%A Sernesi, Edoardo
%T Syzygies and logarithmic vector fields along plane curves
%J Journal de l’École polytechnique — Mathématiques
%D 2014
%P 247-267
%V 1
%I École polytechnique
%U http://geodesic.mathdoc.fr/articles/10.5802/jep.10/
%R 10.5802/jep.10
%G en
%F JEP_2014__1__247_0
Dimca, Alexandru; Sernesi, Edoardo. Syzygies and logarithmic vector fields along plane curves. Journal de l’École polytechnique — Mathématiques, Tome 1 (2014), pp. 247-267. doi : 10.5802/jep.10. http://geodesic.mathdoc.fr/articles/10.5802/jep.10/

[1] Angelini, E. Logarithmic bundles of hypersurface arrangements in n (2013) (arXiv:1304.5709) | MR

[2] Arbarello, E.; Cornalba, M.; Griffiths, P. A.; Harris, J. Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften, 267, Springer-Verlag, New York, 1985, pp. xvi+386 | DOI | Zbl | MR

[3] Arnold, V. I.; Guseĭn-Zade, S. M.; Varchenko, A. N. Singularities of differentiable maps. Vol. II, Monographs in Mathematics, 83, Birkhäuser Boston, Inc., Boston, MA, 1988, pp. viii+492 | DOI | Zbl | MR

[4] Buchweitz, R.-O.; Conca, A. New free divisors from old, J. Commut. Algebra, Volume 5 (2013) no. 1, pp. 17-47 (arXiv:1211.4327) | Zbl | MR

[5] Dimca, A. Topics on real and complex singularities, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1987, pp. xviii+242 | DOI | Zbl | MR

[6] Dimca, A. Syzygies of Jacobian ideals and defects of linear systems, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), Volume 56(104) (2013) no. 2, pp. 191-203 | MR

[7] Dimca, A.; Saito, M. Graded Koszul cohomology and spectrum of certain homogeneous polynomials (2012) (arXiv:1212.1081)

[8] Dimca, A.; Saito, M. Generalization of theorems of Griffiths and Steenbrink to hypersurfaces with ordinary double points (2014) (arXiv:1403.4563)

[9] Dimca, A.; Saito, M. Some remarks on limit mixed Hodge structures and spectrum, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat., Volume 22 (2014) no. 2, pp. 69-78 | MR

[10] Dimca, A.; Sticlaru, G. Koszul complexes and pole order filtrations, Proc. Edinburgh Math. Soc. (2) (to appear, arXiv:1108.3976)

[11] Dimca, A.; Sticlaru, G. Chebyshev curves, free resolutions and rational curve arrangements, Math. Proc. Cambridge Philos. Soc., Volume 153 (2012) no. 3, pp. 385-397 | DOI | Zbl | MR

[12] Dimca, A.; Sticlaru, G. Syzygies of Jacobian ideals and weighted homogeneous singularities (2014) (arXiv:1407.0168)

[13] Dolgachev, I.; Kapranov, M. Arrangements of hyperplanes and vector bundles on n , Duke Math. J., Volume 71 (1993) no. 3, pp. 633-664 | DOI | Zbl | MR

[14] Granger, M.; Mond, D.; Nieto-Reyes, A.; Schulze, M. Linear free divisors and the global logarithmic comparison theorem, Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 2, pp. 811-850 | Zbl | MR | mathdoc-id

[15] Hartshorne, R. Algebraic Geometry, Graduate Texts in Math., 52, Springer-Verlag, 1977 | Zbl | MR

[16] Hulek, K. Stable rank-2 vector bundles on 2 with c 1 odd, Math. Ann., Volume 242 (1979) no. 3, pp. 241-266 | DOI | Zbl | MR

[17] Kollár, J. Singularities of pairs, Algebraic geometry—Santa Cruz 1995 (Proc. Sympos. Pure Math.), Volume 62, American Mathematical Society, Providence, RI, 1997, pp. 221-287 | Zbl | MR

[18] Narváez Macarro, L. Linearity conditions on the Jacobian ideal and logarithmic-meromorphic comparison for free divisors, Singularities I (Contemp. Math.), Volume 474, Amer. Math. Soc., Providence, RI, 2008, pp. 245-269 | DOI | Zbl | MR

[19] Okonek, C.; Schneider, M.; Spindler, H. Vector bundles on complex projective spaces, Progress in Math., 3, Birkhäuser, Boston, Mass., 1980, pp. vii+389 | Zbl | MR

[20] Orlik, P.; Terao, H. Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, 300, Springer-Verlag, Berlin, 1992, pp. xviii+325 | DOI | Zbl | MR

[21] Saito, K. Einfach-elliptische Singularitäten, Invent. Math., Volume 23 (1974), pp. 289-325 | Zbl | MR

[22] Saito, K. Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 27 (1980) no. 2, pp. 265-291 | Zbl | MR

[23] Sernesi, E. Deformations of algebraic schemes, Grundlehren der Mathematischen Wissenschaften, 334, Springer-Verlag, Berlin, 2006, pp. xii+339 | Zbl | MR

[24] Sernesi, E. The local cohomology of the Jacobian ring, Doc. Math., Volume 19 (2014), pp. 541-565 | MR

[25] Simis, A.; Tohăneanu, Ş. O. Homology of homogeneous divisors, Israel J. Math., Volume 200 (2014) no. 1, pp. 449-487 (arXiv:1207.5862) | DOI | MR

[26] Sticlaru, G. Free divisors versus stability and coincidence thresholds (2014) (arXiv:1401.1843)

[27] Ueda, K.; Yoshinaga, M. Logarithmic vector fields along smooth divisors in projective spaces, Hokkaido Math. J., Volume 38 (2009) no. 3, pp. 409-415 | DOI | Zbl | MR

[28] Vallès, J. Nombre maximal d’hyperplans instables pour un fibré de Steiner, Math. Z., Volume 233 (2000) no. 3, pp. 507-514 | DOI | Zbl | MR

[29] Wahl, J. M. Deformations of plane curves with nodes and cusps, Amer. J. Math., Volume 96 (1974), pp. 529-577 | Zbl | MR

[30] Yoshinaga, M. Freeness of hyperplane arrangements and related topics, Ann. Fac. Sci. Toulouse Math. (6), Volume 23 (2014) no. 2, pp. 483-512 (arXiv:1212.3523) | DOI | MR | mathdoc-id

Cité par Sources :