Voir la notice de l'article provenant de la source Numdam
We investigate the relations between the syzygies of the Jacobian ideal of the defining equation for a plane curve and the stability of the sheaf of logarithmic vector fields along , the freeness of the divisor and the Torelli properties of (in the sense of Dolgachev-Kapranov). We show in particular that curves with a small number of nodes and cusps are Torelli in this sense.
Nous étudions les relations entre les syzygies de l’idéal jacobien associé à l’équation définissant une courbe plane et la stabilité du faisceau des champs de vecteurs logarithmiques le long de , la liberté du diviseur et les propriétés de Torelli de (au sens de Dolgachev-Kapranov). Nous montrons en particulier que les courbes ayant un petit nombre de points doubles et de cusps ont la propriété de Torelli.
Dimca, Alexandru 1 ; Sernesi, Edoardo 2
@article{JEP_2014__1__247_0, author = {Dimca, Alexandru and Sernesi, Edoardo}, title = {Syzygies and logarithmic vector fields along plane curves}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {247--267}, publisher = {\'Ecole polytechnique}, volume = {1}, year = {2014}, doi = {10.5802/jep.10}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/jep.10/} }
TY - JOUR AU - Dimca, Alexandru AU - Sernesi, Edoardo TI - Syzygies and logarithmic vector fields along plane curves JO - Journal de l’École polytechnique — Mathématiques PY - 2014 SP - 247 EP - 267 VL - 1 PB - École polytechnique UR - http://geodesic.mathdoc.fr/articles/10.5802/jep.10/ DO - 10.5802/jep.10 LA - en ID - JEP_2014__1__247_0 ER -
%0 Journal Article %A Dimca, Alexandru %A Sernesi, Edoardo %T Syzygies and logarithmic vector fields along plane curves %J Journal de l’École polytechnique — Mathématiques %D 2014 %P 247-267 %V 1 %I École polytechnique %U http://geodesic.mathdoc.fr/articles/10.5802/jep.10/ %R 10.5802/jep.10 %G en %F JEP_2014__1__247_0
Dimca, Alexandru; Sernesi, Edoardo. Syzygies and logarithmic vector fields along plane curves. Journal de l’École polytechnique — Mathématiques, Tome 1 (2014), pp. 247-267. doi : 10.5802/jep.10. http://geodesic.mathdoc.fr/articles/10.5802/jep.10/
[1] Logarithmic bundles of hypersurface arrangements in (2013) (arXiv:1304.5709) | MR
[2] Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften, 267, Springer-Verlag, New York, 1985, pp. xvi+386 | DOI | Zbl | MR
[3] Singularities of differentiable maps. Vol. II, Monographs in Mathematics, 83, Birkhäuser Boston, Inc., Boston, MA, 1988, pp. viii+492 | DOI | Zbl | MR
[4] New free divisors from old, J. Commut. Algebra, Volume 5 (2013) no. 1, pp. 17-47 (arXiv:1211.4327) | Zbl | MR
[5] Topics on real and complex singularities, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1987, pp. xviii+242 | DOI | Zbl | MR
[6] Syzygies of Jacobian ideals and defects of linear systems, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), Volume 56(104) (2013) no. 2, pp. 191-203 | MR
[7] Graded Koszul cohomology and spectrum of certain homogeneous polynomials (2012) (arXiv:1212.1081)
[8] Generalization of theorems of Griffiths and Steenbrink to hypersurfaces with ordinary double points (2014) (arXiv:1403.4563)
[9] Some remarks on limit mixed Hodge structures and spectrum, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat., Volume 22 (2014) no. 2, pp. 69-78 | MR
[10] Koszul complexes and pole order filtrations, Proc. Edinburgh Math. Soc. (2) (to appear, arXiv:1108.3976)
[11] Chebyshev curves, free resolutions and rational curve arrangements, Math. Proc. Cambridge Philos. Soc., Volume 153 (2012) no. 3, pp. 385-397 | DOI | Zbl | MR
[12] Syzygies of Jacobian ideals and weighted homogeneous singularities (2014) (arXiv:1407.0168)
[13] Arrangements of hyperplanes and vector bundles on , Duke Math. J., Volume 71 (1993) no. 3, pp. 633-664 | DOI | Zbl | MR
[14] Linear free divisors and the global logarithmic comparison theorem, Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 2, pp. 811-850 | Zbl | MR | mathdoc-id
[15] Algebraic Geometry, Graduate Texts in Math., 52, Springer-Verlag, 1977 | Zbl | MR
[16] Stable rank- vector bundles on with odd, Math. Ann., Volume 242 (1979) no. 3, pp. 241-266 | DOI | Zbl | MR
[17] Singularities of pairs, Algebraic geometry—Santa Cruz 1995 (Proc. Sympos. Pure Math.), Volume 62, American Mathematical Society, Providence, RI, 1997, pp. 221-287 | Zbl | MR
[18] Linearity conditions on the Jacobian ideal and logarithmic-meromorphic comparison for free divisors, Singularities I (Contemp. Math.), Volume 474, Amer. Math. Soc., Providence, RI, 2008, pp. 245-269 | DOI | Zbl | MR
[19] Vector bundles on complex projective spaces, Progress in Math., 3, Birkhäuser, Boston, Mass., 1980, pp. vii+389 | Zbl | MR
[20] Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, 300, Springer-Verlag, Berlin, 1992, pp. xviii+325 | DOI | Zbl | MR
[21] Einfach-elliptische Singularitäten, Invent. Math., Volume 23 (1974), pp. 289-325 | Zbl | MR
[22] Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 27 (1980) no. 2, pp. 265-291 | Zbl | MR
[23] Deformations of algebraic schemes, Grundlehren der Mathematischen Wissenschaften, 334, Springer-Verlag, Berlin, 2006, pp. xii+339 | Zbl | MR
[24] The local cohomology of the Jacobian ring, Doc. Math., Volume 19 (2014), pp. 541-565 | MR
[25] Homology of homogeneous divisors, Israel J. Math., Volume 200 (2014) no. 1, pp. 449-487 (arXiv:1207.5862) | DOI | MR
[26] Free divisors versus stability and coincidence thresholds (2014) (arXiv:1401.1843)
[27] Logarithmic vector fields along smooth divisors in projective spaces, Hokkaido Math. J., Volume 38 (2009) no. 3, pp. 409-415 | DOI | Zbl | MR
[28] Nombre maximal d’hyperplans instables pour un fibré de Steiner, Math. Z., Volume 233 (2000) no. 3, pp. 507-514 | DOI | Zbl | MR
[29] Deformations of plane curves with nodes and cusps, Amer. J. Math., Volume 96 (1974), pp. 529-577 | Zbl | MR
[30] Freeness of hyperplane arrangements and related topics, Ann. Fac. Sci. Toulouse Math. (6), Volume 23 (2014) no. 2, pp. 483-512 (arXiv:1212.3523) | DOI | MR | mathdoc-id
Cité par Sources :