On the uniqueness of ground states of non-local equations
Journées équations aux dérivées partielles (2011), article no. 5, 10 p.

Voir la notice de l'acte provenant de la source Numdam

We review our joint result with E. Lenzmann about the uniqueness of ground state solutions of non-linear equations involving the fractional Laplacian and provide an alternate uniqueness proof for an equation related to the intermediate long-wave equation.

DOI : 10.5802/jedp.77

Frank, Rupert L. 1

1 Rupert L. Frank, Department of Mathematics, Princeton University, Washington Road, Princeton, NJ 08544, USA
@incollection{JEDP_2011____A5_0,
     author = {Frank, Rupert L.},
     title = {On the uniqueness of ground states of non-local equations},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {5},
     pages = {1--10},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2011},
     doi = {10.5802/jedp.77},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.77/}
}
TY  - JOUR
AU  - Frank, Rupert L.
TI  - On the uniqueness of ground states of non-local equations
JO  - Journées équations aux dérivées partielles
PY  - 2011
SP  - 1
EP  - 10
PB  - Groupement de recherche 2434 du CNRS
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jedp.77/
DO  - 10.5802/jedp.77
LA  - en
ID  - JEDP_2011____A5_0
ER  - 
%0 Journal Article
%A Frank, Rupert L.
%T On the uniqueness of ground states of non-local equations
%J Journées équations aux dérivées partielles
%D 2011
%P 1-10
%I Groupement de recherche 2434 du CNRS
%U http://geodesic.mathdoc.fr/articles/10.5802/jedp.77/
%R 10.5802/jedp.77
%G en
%F JEDP_2011____A5_0
Frank, Rupert L. On the uniqueness of ground states of non-local equations. Journées équations aux dérivées partielles (2011), article  no. 5, 10 p. doi : 10.5802/jedp.77. http://geodesic.mathdoc.fr/articles/10.5802/jedp.77/

[1] J. P. Albert, Positivity properties and uniqueness of solitary wave solutions of the intermediate long-wave equation. In: Evolution equations (Baton Rouge, LA, 1992), 11–20, Lecture Notes in Pure and Appl. Math. 168, Dekker, New York, 1995. | Zbl | MR

[2] J. P. Albert, J. L. Bona, Total positivity and the stability of internal waves in stratified fluids of finite depth. IMA J. Appl. Math. 46 (1991), no. 1-2, 1–19. | Zbl | MR

[3] J. P. Albert, J. L. Bona, J.-C. Saut, Model equations for waves in stratified fluids. Proc. R. Soc. Lond. A 453 (1997), 1233–1260. | Zbl | MR

[4] J. P. Albert, J. F. Toland, On the exact solutions of the intermediate long-wave equation. Differential Integral Equations 7 (1994), no. 3–4, 601–612. | Zbl | MR

[5] C. J. Amick, J. F. Toland, Uniqueness and related analytic properties for the Benjamin-Ono equation – a nonlinear Neumann problem in the plane. Acta Math. 167 (1991), no. 1-2, 107–126. | Zbl | MR

[6] W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. of Math. (2) 138 (1993), no. 1, 213–242. | Zbl | MR

[7] W. Chen, C. Li, B. Ou, Classification of solutions for an integral equation. Comm. Pure Appl. Math. 59 (2006), no. 3, 330–343. | Zbl | MR

[8] Ch. V. Coffman, Uniqueness of the ground state solution for Δu-u+u 3 =0 and a variational characterization of other solutions. Arch. Rational Mech. Anal. 46 (1972), 81–95. | Zbl | MR

[9] R. L. Frank, E. Lenzmann, On ground states for the L 2 -critical boson star equation. Preprint (2009), arXiv:0910.2721.

[10] R. L. Frank, E. Lenzmann, Uniqueness of nonlinear ground states for fractional Laplacians in , Acta Math., to appear. Preprint (2010), arXiv:1009.4042.

[11] R. L. Frank, E. H. Lieb, A new, rearrangement-free proof of the sharp Hardy-Littlewood-Sobolev inequality. In: Spectral Theory, Function Spaces and Inequalities, B. M. Brown et al. (eds.), 55–67, Oper. Theory Adv. Appl. 219, Birkhäuser, Basel, 2011.

[12] R. L. Frank, E. H. Lieb, R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators. J. Amer. Math. Soc. 21 (2008), no. 4, 925–950. | Zbl | MR

[13] R. L. Frank, R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255 (2008), 3407–3430. | Zbl | MR

[14] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products. Seventh edition. Elsevier/Academic Press, Amsterdam, 2007. | Zbl | MR

[15] R. I. Joseph, Solitary waves in a finite depth fluid. J. Phys. A 10 (1977), L225–L227. | Zbl | MR

[16] C.E. Kenig, Y. Martel, L. Robbiano, Local well-posedness and blow up in the energy space for a class of L 2 critical dispersion generalized Benjamin–Ono equations. Ann. IHP (C) Non Linear Analysis, 28 (2011), no. 6, 853–887.

[17] M. K. Kwong, Uniqueness of positive solutions of Δu-u+u p =0 in n . Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266. | Zbl | MR

[18] Y. Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres. J. Eur. Math. Soc. (JEMS) 6 (2004), no. 2, 153–180. | Zbl | MR

[19] E. H. Lieb, Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. of Math. (2) 118 (1983), no. 2, 349–374. | Zbl | MR

[20] E. H. Lieb, M. Loss, Analysis. Second edition. Graduate Studies in Mathematics 14, American Mathematical Society, Providence, RI, 2001. | Zbl | MR

[21] E. H. Lieb, H.-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Comm. Math. Phys. 112 (1987), no. 1, 147–174. | Zbl | MR

[22] L. Ma, L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195 (2010), no. 2, 455–467. | Zbl | MR

[23] K. McLeod, J. Serrin, Uniqueness of positive radial solutions of -Δu+f(u)=0 in R n . Arch. Rational Mech. Anal. 99 (1987), no. 2, 115–145. | Zbl | MR

Cité par Sources :