Regularization by noise for some nonlinear dispersive PDEs
[Régularisation par le bruit pour certaines EDP dispersives]
Journées équations aux dérivées partielles (2023), Exposé no. 9, 12 p.

Voir la notice de l'acte provenant de la source Numdam

In the context of ODEs or transport PDEs, there are examples where adding a rough stochastic perturbation to the equation at hand actually improves the well-posedness theory. In these notes, we review some results showing how a distributional modulation of the dispersion can also produce a regularization by noise effect for a rather large class of nonlinear dispersive PDEs.

Publié le :
DOI : 10.5802/jedp.680
Classification : 60H50, 35A01
Keywords: Nonlinear dispersive PDEs, Nonlinear Young integral

Robert, Tristan 1

1 Université de Lorraine, CNRS, IECL, F-54000 Nancy, France
@incollection{JEDP_2023____A9_0,
     author = {Robert, Tristan},
     title = {Regularization by noise for some nonlinear dispersive {PDEs}},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:9},
     pages = {1--12},
     publisher = {R\'eseau th\'ematique AEDP du CNRS},
     year = {2023},
     doi = {10.5802/jedp.680},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.680/}
}
TY  - JOUR
AU  - Robert, Tristan
TI  - Regularization by noise for some nonlinear dispersive PDEs
JO  - Journées équations aux dérivées partielles
N1  - talk:9
PY  - 2023
SP  - 1
EP  - 12
PB  - Réseau thématique AEDP du CNRS
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jedp.680/
DO  - 10.5802/jedp.680
LA  - en
ID  - JEDP_2023____A9_0
ER  - 
%0 Journal Article
%A Robert, Tristan
%T Regularization by noise for some nonlinear dispersive PDEs
%J Journées équations aux dérivées partielles
%Z talk:9
%D 2023
%P 1-12
%I Réseau thématique AEDP du CNRS
%U http://geodesic.mathdoc.fr/articles/10.5802/jedp.680/
%R 10.5802/jedp.680
%G en
%F JEDP_2023____A9_0
Robert, Tristan. Regularization by noise for some nonlinear dispersive PDEs. Journées équations aux dérivées partielles (2023), Exposé no. 9, 12 p.. doi: 10.5802/jedp.680

Cité par Sources :