Dispersive and Strichartz estimates for the wave equation in domains with boundary
Journées équations aux dérivées partielles (2010), article no. 11, 19 p.

Voir la notice de l'acte provenant de la source Numdam

In this note we consider a strictly convex domain Ω d of dimension d2 with smooth boundary Ω and we describe the dispersive and Strichartz estimates for the wave equation with the Dirichlet boundary condition. We obtain counterexamples to the optimal Strichartz estimates of the flat case; we also discuss the some results concerning the dispersive estimates.

DOI : 10.5802/jedp.68

Ivanovici, Oana 1

1 Université de Nice Sophia-Antipolis, Laboratoire J.A.Dieudonné, Parc Valrose 06108 Nice Cedex 02 FRANCE
@incollection{JEDP_2010____A11_0,
     author = {Ivanovici, Oana},
     title = {Dispersive and {Strichartz} estimates for the wave equation in domains with boundary},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {11},
     pages = {1--19},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2010},
     doi = {10.5802/jedp.68},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.68/}
}
TY  - JOUR
AU  - Ivanovici, Oana
TI  - Dispersive and Strichartz estimates for the wave equation in domains with boundary
JO  - Journées équations aux dérivées partielles
PY  - 2010
SP  - 1
EP  - 19
PB  - Groupement de recherche 2434 du CNRS
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jedp.68/
DO  - 10.5802/jedp.68
LA  - en
ID  - JEDP_2010____A11_0
ER  - 
%0 Journal Article
%A Ivanovici, Oana
%T Dispersive and Strichartz estimates for the wave equation in domains with boundary
%J Journées équations aux dérivées partielles
%D 2010
%P 1-19
%I Groupement de recherche 2434 du CNRS
%U http://geodesic.mathdoc.fr/articles/10.5802/jedp.68/
%R 10.5802/jedp.68
%G en
%F JEDP_2010____A11_0
Ivanovici, Oana. Dispersive and Strichartz estimates for the wave equation in domains with boundary. Journées équations aux dérivées partielles (2010), article  no. 11, 19 p. doi : 10.5802/jedp.68. http://geodesic.mathdoc.fr/articles/10.5802/jedp.68/

[1] Blair, Matthew D.; Smith, Hart F.; Sogge, Christopher D. Strichartz estimates for the wave equation on manifolds with boundary, to appear in Ann.Inst.H.Poincaré, Anal.Non Liréaire | MR | mathdoc-id

[2] Burq, Nicolas; Gérard, Patrick; Tzvetkov, Nicolay Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., Volume 126 (2004) no. 3, pp. 569-605 | Zbl | MR

[3] Burq, Nicolas; Lebeau, Gilles; Planchon, Fabrice Global existence for energy critical waves in 3-D domains, J. Amer. Math. Soc., Volume 21 (2008) no. 3, pp. 831-845 | MR

[4] Davies, E. B. The functional calculus, J. London Math. Soc. (2), Volume 52 (1995) no. 1, pp. 166-176 | Zbl | MR

[5] Eskin, Gregory Parametrix and propagation of singularities for the interior mixed hyperbolic problem, J. Analyse Math., Volume 32 (1977), pp. 17-62 | Zbl | MR

[6] Ginibre, J.; Velo, G. Generalized Strichartz inequalities for the wave equation, Partial differential operators and mathematical physics (Holzhau, 1994) (Oper. Theory Adv. Appl.), Volume 78, Birkhäuser, Basel, 1995, pp. 153-160 | MR

[7] Grieser, Daniel L p bounds for eigenfunctions and spectral projections of the Laplacian near concave boundaries. Thesis, UCLA, 1992 (http://www.staff.uni-oldenburg.de/daniel.grieser/wwwpapers/diss.pdf)

[8] Ivanovici, Oana Counter example to Strichartz estimates for the wave equation in domains, 2008 (to appear in Math. Annalen, arXiv:math/0805.2901) | arXiv

[9] Ivanovici, Oana Counterexamples to the Strichartz estimates for the wave equation in domains II, 2009 http://www.citebase.org/... (arXiv:math/0903.0048) | MR

[10] Ivanovici, Oana; Planchon, Fabrice Square function and heat flow estimates on domains, 2008 (arXiv:math/0812.2733) | arXiv

[11] Kapitanskiĭ, L. V. Some generalizations of the Strichartz-Brenner inequality, Algebra i Analiz, Volume 1 (1989) no. 3, pp. 127-159 | Zbl | MR

[12] Keel, Markus; Tao, Terence Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998) no. 5, pp. 955-980 | Zbl | MR

[13] Lebeau, Gilles Estimation de dispersion pour les ondes dans un convexe, Journées “Équations aux Dérivées Partielles” (Evian, 2006), 2006 (see http://www.numdam.org/numdam-bin/fitem?id=JEDP_2006____A7_0) | mathdoc-id

[14] Lindblad, Hans; Sogge, Christopher D. On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., Volume 130 (1995) no. 2, pp. 357-426 | Zbl | MR

[15] Nier, Francis A variational formulation of Schrödinger-Poisson systems in dimension d3, Comm. Partial Differential Equations, Volume 18 (1993) no. 7-8, pp. 1125-1147 | Zbl | MR

[16] Oraevsky, A.N. Whispering-gallery waves, Quantum Electronics, Volume 32 (2002) no. 5, pp. 377-400

[17] Smith, Hart F. A parametrix construction for wave equations with C 1,1 coefficients, Ann. Inst. Fourier (Grenoble), Volume 48 (1998) no. 3, pp. 797-835 | Zbl | MR | mathdoc-id

[18] Smith, Hart F.; Sogge, Christopher D. On the critical semilinear wave equation outside convex obstacles, J. Amer. Math. Soc., Volume 8 (1995) no. 4, pp. 879-916 | Zbl | MR

[19] Smith, Hart F.; Sogge, Christopher D. On the L p norm of spectral clusters for compact manifolds with boundary, Acta Math., Volume 198 (2007) no. 1, pp. 107-153 | Zbl | MR

[20] Strichartz, Robert S. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Volume 44 (1977) no. 3, pp. 705-714 | Zbl | MR

[21] Tataru, Daniel Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III, J. Amer. Math. Soc., Volume 15 (2002) no. 2, p. 419-442 (electronic) | Zbl | MR

Cité par Sources :