Hydrodynamic limits and hypocoercivity for kinetic equations with heavy tails
Journées équations aux dérivées partielles (2023), Exposé no. 3, 7 p.

Voir la notice de l'acte provenant de la source Numdam

This expository article, written for the proceedings of the Journées EDP 2023, presents mainly joint works with Dolbeault and Laflèche [1] and Mouhot [3]. We will review some results about long time behaviour of linear kinetic equations for which the microscopic equilibrium (that is, the kernel of the reorientation operator) is typically a density with polynomial decay. There will be no space confinement and the reorientation operator could be of scattering, Fokker–Planck or Levy–Fokker–Planck types. We will first present a spectral approach a la Ellis and Pinsky that yields to a unified treatment of the macroscopic limits for this kind of equations and then focus on re-shaping the Dolbeault–Mouhot–Schmeiser L 2 -hypocoercivity method to get explicit rates of decay to zero in suitable weighted norms.

Publié le :
DOI : 10.5802/jedp.674

Bouin, Emeric 1

1 CEREMADE - Université Paris-Dauphine, UMR CNRS 7534, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France.
@incollection{JEDP_2023____A3_0,
     author = {Bouin, Emeric},
     title = {Hydrodynamic limits and hypocoercivity for kinetic equations with heavy tails},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:3},
     pages = {1--7},
     publisher = {R\'eseau th\'ematique AEDP du CNRS},
     year = {2023},
     doi = {10.5802/jedp.674},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.674/}
}
TY  - JOUR
AU  - Bouin, Emeric
TI  - Hydrodynamic limits and hypocoercivity for kinetic equations with heavy tails
JO  - Journées équations aux dérivées partielles
N1  - talk:3
PY  - 2023
SP  - 1
EP  - 7
PB  - Réseau thématique AEDP du CNRS
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jedp.674/
DO  - 10.5802/jedp.674
LA  - en
ID  - JEDP_2023____A3_0
ER  - 
%0 Journal Article
%A Bouin, Emeric
%T Hydrodynamic limits and hypocoercivity for kinetic equations with heavy tails
%J Journées équations aux dérivées partielles
%Z talk:3
%D 2023
%P 1-7
%I Réseau thématique AEDP du CNRS
%U http://geodesic.mathdoc.fr/articles/10.5802/jedp.674/
%R 10.5802/jedp.674
%G en
%F JEDP_2023____A3_0
Bouin, Emeric. Hydrodynamic limits and hypocoercivity for kinetic equations with heavy tails. Journées équations aux dérivées partielles (2023), Exposé no. 3, 7 p.. doi: 10.5802/jedp.674

Cité par Sources :