Modified scattering for the small data solutions to the Vlasov–Maxwell system
Journées équations aux dérivées partielles (2023), Exposé no. 2, 15 p.
Voir la notice de l'acte provenant de la source Numdam
In this note, we first present the scattering problem for the Vlasov–Maxwell system. Then, by studying the linearised system, we explain why the distribution function merely exhibits, in general, a modified scattering dynamic.
@incollection{JEDP_2023____A2_0, author = {Bigorgne, L\'eo}, title = {Modified scattering for the small data solutions to the {Vlasov{\textendash}Maxwell} system}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:2}, pages = {1--15}, publisher = {R\'eseau th\'ematique AEDP du CNRS}, year = {2023}, doi = {10.5802/jedp.673}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.673/} }
TY - JOUR AU - Bigorgne, Léo TI - Modified scattering for the small data solutions to the Vlasov–Maxwell system JO - Journées équations aux dérivées partielles N1 - talk:2 PY - 2023 SP - 1 EP - 15 PB - Réseau thématique AEDP du CNRS UR - http://geodesic.mathdoc.fr/articles/10.5802/jedp.673/ DO - 10.5802/jedp.673 LA - en ID - JEDP_2023____A2_0 ER -
%0 Journal Article %A Bigorgne, Léo %T Modified scattering for the small data solutions to the Vlasov–Maxwell system %J Journées équations aux dérivées partielles %Z talk:2 %D 2023 %P 1-15 %I Réseau thématique AEDP du CNRS %U http://geodesic.mathdoc.fr/articles/10.5802/jedp.673/ %R 10.5802/jedp.673 %G en %F JEDP_2023____A2_0
Bigorgne, Léo. Modified scattering for the small data solutions to the Vlasov–Maxwell system. Journées équations aux dérivées partielles (2023), Exposé no. 2, 15 p.. doi: 10.5802/jedp.673
Cité par Sources :