Asymptotics for vectorial Allen–Cahn type problems
Journées équations aux dérivées partielles (2023), Exposé no. 1, 16 p.

Voir la notice de l'acte provenant de la source Numdam

These notes present some recent results concerning the convergence of solutions to the elliptic vectorial Allen–Cahn equation in dimension two as the parameter ε tends to zero, and its connections to minimal surface theory in the weak sense of stationary varifolds. We first describe the results obtained so far in the scalar theory, which can be considered as quite satisfactory, and provide some ideas about the proofs and their main steps. We then present some adaptations necessary to handle the vectorial case in dimension two.

Publié le :
DOI : 10.5802/jedp.672

Bethuel, Fabrice 1

1 Laboratoire Jacques-Louis Lions Sorbonne Université 4 place Jussieu 75252 Paris Cedex 5 France
@incollection{JEDP_2023____A1_0,
     author = {Bethuel, Fabrice},
     title = {Asymptotics for vectorial {Allen{\textendash}Cahn} type problems},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:1},
     pages = {1--16},
     publisher = {R\'eseau th\'ematique AEDP du CNRS},
     year = {2023},
     doi = {10.5802/jedp.672},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.672/}
}
TY  - JOUR
AU  - Bethuel, Fabrice
TI  - Asymptotics for vectorial Allen–Cahn type problems
JO  - Journées équations aux dérivées partielles
N1  - talk:1
PY  - 2023
SP  - 1
EP  - 16
PB  - Réseau thématique AEDP du CNRS
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jedp.672/
DO  - 10.5802/jedp.672
LA  - en
ID  - JEDP_2023____A1_0
ER  - 
%0 Journal Article
%A Bethuel, Fabrice
%T Asymptotics for vectorial Allen–Cahn type problems
%J Journées équations aux dérivées partielles
%Z talk:1
%D 2023
%P 1-16
%I Réseau thématique AEDP du CNRS
%U http://geodesic.mathdoc.fr/articles/10.5802/jedp.672/
%R 10.5802/jedp.672
%G en
%F JEDP_2023____A1_0
Bethuel, Fabrice. Asymptotics for vectorial Allen–Cahn type problems. Journées équations aux dérivées partielles (2023), Exposé no. 1, 16 p.. doi: 10.5802/jedp.672

Cité par Sources :