Hypoelliptic estimates for some linear diffusive kinetic equations
Journées équations aux dérivées partielles (2010), article no. 9, 13 p.

Voir la notice de l'acte provenant de la source Numdam

This note is an announcement of a forthcoming paper [13] in collaboration with K. Pravda-Starov on global hypoelliptic estimates for Fokker-Planck and linear Landau-type operators. Linear Landau-type equations are a class of inhomogeneous kinetic equations with anisotropic diffusion whose study is motivated by the linearization of the Landau equation near the Maxwellian distribution. By introducing a microlocal method by multiplier which can be adapted to various hypoelliptic kinetic equations, we establish optimal global hypoelliptic estimates with loss of 4/3 derivatives in a Sobolev scale exactly related to the anisotropy of the diffusion.

DOI : 10.5802/jedp.66
Classification : 35H10, 35H20, 35B65, 82C40
Keywords: Kinetic equations, Regularity, global hypoelliptic estimates, hypoellipticity, anisotropic diffusion, Wick quantization, Landau, Fokker-Planck

Hérau, Frédéric 1

1 Laboratoire de Mathématiques Jean Leray 2, rue de la Houssinière - BP 92208 F-44322 Nantes Cedex 3
@incollection{JEDP_2010____A9_0,
     author = {H\'erau, Fr\'ed\'eric},
     title = {Hypoelliptic estimates for some linear diffusive kinetic equations},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {9},
     pages = {1--13},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2010},
     doi = {10.5802/jedp.66},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.66/}
}
TY  - JOUR
AU  - Hérau, Frédéric
TI  - Hypoelliptic estimates for some linear diffusive kinetic equations
JO  - Journées équations aux dérivées partielles
PY  - 2010
SP  - 1
EP  - 13
PB  - Groupement de recherche 2434 du CNRS
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jedp.66/
DO  - 10.5802/jedp.66
LA  - en
ID  - JEDP_2010____A9_0
ER  - 
%0 Journal Article
%A Hérau, Frédéric
%T Hypoelliptic estimates for some linear diffusive kinetic equations
%J Journées équations aux dérivées partielles
%D 2010
%P 1-13
%I Groupement de recherche 2434 du CNRS
%U http://geodesic.mathdoc.fr/articles/10.5802/jedp.66/
%R 10.5802/jedp.66
%G en
%F JEDP_2010____A9_0
Hérau, Frédéric. Hypoelliptic estimates for some linear diffusive kinetic equations. Journées équations aux dérivées partielles (2010), article  no. 9, 13 p. doi : 10.5802/jedp.66. http://geodesic.mathdoc.fr/articles/10.5802/jedp.66/

[1] R. Alexandre, Y. Morimoto, S. Ukai, C-J. Xu, T. Yang, Uncertainty principle and kinetic equations, J. Funct. Anal. 255, no. 8, 2013-2066 (2008). | Zbl | MR

[2] R. Alexandre, Y. Morimoto, S. Ukai, C-J. Xu, T. Yang, The Boltzmann equation without angular cutoff. Global existence and full regularity of the Boltzmann equation without angular cutoff. Part I : Maxwellian case and small singularity, preprint (2009), http://arxiv.org/abs/0912.1426

[3] P. Bolley, J. Camus, J. Nourrigat, La condition de Hörmander-Kohn pour les opérateurs pseudo-différentiels, Comm. Partial Differential Equations, 7, no. 2, 197-221 (1982). | Zbl | MR

[4] F. Bouchut, Hypoelliptic regularity in kinetic equations, J. Math. Pures Appl. (9) 81, no. 11, 1135-1159 (2002). | Zbl | MR

[5] H. Chen, W-X. Li, C-J. Xu, Propagation of Gevrey regularity for solutions of Landau equations, Kinet. Relat. Models, 1, no.3, 355-368 (2008). | Zbl | MR

[6] H. Chen, W-X. Li, C-J. Xu, Gevrey regularity for solution of the spatially homogeneous Landau equation, Acta Math. Sci. Ser. B Engl. Ed. 29, no. 3, 673-686 (2009). | MR

[7] H. Chen, W-X. Li, C-J. Xu, Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations, J. Differential Equations, 246, no. 1, 320-339 (2009). | Zbl | MR

[8] J-P. Eckmann, M. Hairer, Spectral properties of hypoelliptic operators, Comm. Math. Phys. 235, no. 2, 233-253 (2003). | Zbl | MR

[9] C. Fefferman, D.H. Phong, The uncertainty principle and sharp Gårding inequalities, Comm. Pure Appl. Math. 34, no. 3, 285-331 (1981). | Zbl | MR

[10] Y. Guo, The Landau equation in a periodic box, Comm. Math. Phys. 231, no. 3, 391-434 (2002). | Zbl | MR

[11] B. Helffer, F. Nier, Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Lecture Notes in Mathematics, 1862, Springer-Verlag, Berlin (2005). | Zbl | MR

[12] F. Hérau, F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal. 171, no. 2, 151-218 (2004). | Zbl | MR

[13] F. Hérau, K. Pravda-Starov, Anisotropic hypoelliptic estimates for Landau-type operators, submitted (2010).

[14] F. Hérau, J. Sjöstrand, C. Stolk, Semiclassical analysis for the Kramers-Fokker-Planck equation, Comm. Partial Differential Equations, 30, no. 4-6, 689-760 (2005). | Zbl | MR

[15] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119, 147-171 (1967). | Zbl | MR

[16] L. Hörmander, The analysis of linear partial differential operators, vol. I-IV, Springer-Verlag (1985).

[17] J.J. Kohn, Pseudodifferential operators and hypoellipticity, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), pp. 61-69, Amer. Math. Soc., Providence, R.I. (1973). | Zbl | MR

[18] N. Lerner, The Wick calculus of pseudo-differential operators and some of its applications, Cubo Mat. Educ. 5, no. 1, 213-236 (2003). | MR

[19] N. Lerner, Metrics on the phase space and non-selfadjoint pseudo-differential operators, Pseudo-Differential Operators, Theory and Applications, Vol. 3, Birkhäuser (2010). | Zbl | MR

[20] C. Mouhot, L. Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19, no. 4, 969-998 (2006). | Zbl | MR

[21] Y. Morimoto, C-J. Xu, Hypoellipticity for a class of kinetic equations, J. Math. Kyoto Univ. 47, no. 1, 129-152 (2007). | Zbl | MR

[22] Y. Morimoto, C-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Differential Equations, 247, no. 2, 596-617 (2009). | Zbl | MR

[23] K. Pravda-Starov, Subelliptic estimates for quadratic differential operators, to appear in American Journal of Mathematics (2010), http://arxiv.org/abs/0809.0186

[24] L.P. Rothschild, E.M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137, no. 3-4, 247-320 (1976). | Zbl | MR

[25] C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of mathematical fluid dynamics, Vol. I, 71-305, North-Holland, Amsterdam (2002). | Zbl | MR

[26] C-J. Xu, Fourier analysis of non-cutoff Boltzmann equations, Lectures on the Analysis of Nonlinear Partial Differential Equations, Vol. 1, Morningside Lectures in Mathematics, Higher Education Press and International Press Beijing-Boston, 585-197 (2009).

Cité par Sources :