Correlation spectrum of Morse-Smale gradient flows
Journées équations aux dérivées partielles (2017), Exposé no. 6, 13 p.

Voir la notice de l'acte provenant de la source Numdam

In this note, we review our recent works devoted to the spectral analysis of Morse-Smale flows. Then we give applications to differential topology and to the spectral theory of Witten Laplacians.

Publié le :
DOI : 10.5802/jedp.656

Dang, Nguyen Viet 1 ; Rivière, Gabriel 2

1 Institut Camille Jordan (U.M.R. CNRS 5208) Université Claude Bernard Lyon 1 Bâtiment Braconnier 43, boulevard du 11 novembre 1918 69622 Villeurbanne Cedex, France
2 Laboratoire Paul Painlevé (U.M.R. CNRS 8524) U.F.R. de Mathématiques Université Lille 1 59655 Villeneuve d’Ascq Cedex, France
@incollection{JEDP_2017____A6_0,
     author = {Dang, Nguyen Viet and Rivi\`ere, Gabriel},
     title = {Correlation spectrum of {Morse-Smale} gradient flows},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:6},
     pages = {1--13},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2017},
     doi = {10.5802/jedp.656},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.656/}
}
TY  - JOUR
AU  - Dang, Nguyen Viet
AU  - Rivière, Gabriel
TI  - Correlation spectrum of Morse-Smale gradient flows
JO  - Journées équations aux dérivées partielles
N1  - talk:6
PY  - 2017
SP  - 1
EP  - 13
PB  - Groupement de recherche 2434 du CNRS
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jedp.656/
DO  - 10.5802/jedp.656
LA  - en
ID  - JEDP_2017____A6_0
ER  - 
%0 Journal Article
%A Dang, Nguyen Viet
%A Rivière, Gabriel
%T Correlation spectrum of Morse-Smale gradient flows
%J Journées équations aux dérivées partielles
%Z talk:6
%D 2017
%P 1-13
%I Groupement de recherche 2434 du CNRS
%U http://geodesic.mathdoc.fr/articles/10.5802/jedp.656/
%R 10.5802/jedp.656
%G en
%F JEDP_2017____A6_0
Dang, Nguyen Viet; Rivière, Gabriel. Correlation spectrum of Morse-Smale gradient flows. Journées équations aux dérivées partielles (2017), Exposé no. 6, 13 p. doi : 10.5802/jedp.656. http://geodesic.mathdoc.fr/articles/10.5802/jedp.656/

[1] Baladi, V.; Tsujii, M. Dynamical determinants and spectrum for hyperbolic diffeomorphisms, Geometric and probabilistic structures in dynamics (Contemp. Math.), Volume 469, Amer. Math. Soc., Providence, RI, 2008, pp. 29-68

[2] Bismut, J.-M.; Zhang, W. An extension of a theorem by Cheeger and Müller, Astérisque (1992) no. 205, 235 pages (With an appendix by François Laudenbach)

[3] Blank, M.; Keller, G.; Liverani, C. Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity, Volume 15 (2002) no. 6, pp. 1905-1973

[4] Brunetti, R.; Fredenhagen, K. Microlocal Analysis and Interacting Quantum Field Theories: Renormalization on Physical Backgrounds, Comm. Math. Phys., Volume 208 (2000) no. 3, pp. 623-661

[5] Butterley, O.; Liverani, C. Smooth Anosov flows: correlation spectra and stability, J. Mod. Dyn., Volume 1 (2007) no. 2, pp. 301-322

[6] Dang, N.V. Renormalization of quantum field theory on curved space-times, a causal approach, arXiv preprint arXiv:1312.5674 (2013)

[7] Dang, N.V. The extension of distributions on manifolds, a microlocal approach, Ann. Henri Poincaré, Volume 17 (2016) no. 4, pp. 819-859

[8] Dang, N.V.; Rivière, G. Spectral analysis of Morse-Smale gradient flows (2016) (Preprint arXiv:1605.05516)

[9] Dang, N.V.; Rivière, G. Pollicott-Ruelle spectrum and Witten Laplacians, arXiv preprint arXiv:1709.04265 (2017)

[10] Dang, N.V.; Rivière, G. Spectral analysis of Morse-Smale flows I: Construction of the anisotropic Sobolev spaces (2017) (Preprint arXiv:1703.08040)

[11] Dang, N.V.; Rivière, G. Spectral analysis of Morse-Smale flows II: Resonances and resonant states (2017) (Preprint arXiv:1703.08038)

[12] Dang, N.V.; Rivière, G. Topology of Pollicott-Ruelle resonant states (2017) (Preprint arXiv:1703.08037)

[13] Dyatlov, S.; Zworski, M. Stochastic stability of Pollicott-Ruelle resonances, Nonlinearity, Volume 28 (2015) no. 10, pp. 3511-3533

[14] Dyatlov, S.; Zworski, M. Dynamical zeta functions for Anosov flows via microlocal analysis, Ann. Sci. Éc. Norm. Supér. (4), Volume 49 (2016) no. 3, pp. 543-577

[15] Dyatlov, S.; Zworski, M. Ruelle zeta function at zero for surfaces, Inv. Math. (2017) (To appear)

[16] Faure, F.; Sjöstrand, J. Upper bound on the density of Ruelle resonances for Anosov flows, Comm. Math. Phys., Volume 308 (2011) no. 2, pp. 325-364

[17] Frenkel, E.; Losev, A.; Nekrasov, N. Instantons beyond topological theory. I, J. Inst. Math. Jussieu, Volume 10 (2011) no. 3, pp. 463-565

[18] Fried, D. Lefschetz formulas for flows, The Lefschetz centennial conference, Part III (Mexico City, 1984) (Contemp. Math.), Volume 58, Amer. Math. Soc., Providence, RI, 1987, pp. 19-69

[19] Harvey, F.R.; Lawson, H.B. Jr. Morse theory and Stokes’ theorem, Surveys in differential geometry (Surv. Differ. Geom., VII), Int. Press, Somerville, MA, 2000, pp. 259-311

[20] Harvey, F.R.; Lawson, H.B. Jr. Finite volume flows and Morse theory, Ann. of Math. (2), Volume 153 (2001) no. 1, pp. 1-25

[21] Helffer, B.; Sjöstrand, J. Puits multiples en mécanique semi-classique. IV. Étude du complexe de Witten, Comm. Partial Differential Equations, Volume 10 (1985) no. 3, pp. 245-340

[22] Laudenbach, F. Transversalité, courants et théorie de Morse, Éditions de l’École Polytechnique, Palaiseau, 2012, x+182 pages (Un cours de topologie différentielle. [A course of differential topology],)

[23] Liverani, C. On contact Anosov flows, Ann. of Math. (2), Volume 159 (2004) no. 3, pp. 1275-1312

[24] Minervini, G. A current approach to Morse and Novikov theories, Rend. Mat. Appl. (7), Volume 36 (2015) no. 3-4, pp. 95-195

[25] Nelson, E. Topics in dynamics. I: Flows, Mathematical Notes, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1969, iii+118 pages

[26] Palis, J. Jr.; de Melo, W. Geometric theory of dynamical systems, Springer-Verlag, New York-Berlin, 1982, xii+198 pages (An introduction, Translated from the Portuguese by A. K. Manning)

[27] Schwartz, L. Théorie des distributions, Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X., Hermann, Paris, 1966, xiii+420 pages

[28] Smale, S. Morse inequalities for a dynamical system, Bull. Amer. Math. Soc., Volume 66 (1960), pp. 43-49

[29] Thom, R. Sur une partition en cellules associée à une fonction sur une variété, C. R. Acad. Sci. Paris, Volume 228 (1949), pp. 973-975

[30] Tsujii, M. Quasi-compactness of transfer operators for contact Anosov flows, Nonlinearity, Volume 23 (2010) no. 7, pp. 1495-1545

[31] Tsujii, M. Contact Anosov flows and the Fourier-Bros-Iagolnitzer transform, Ergodic Theory Dynam. Systems, Volume 32 (2012) no. 6, pp. 2083-2118

[32] Weber, J. The Morse-Witten complex via dynamical systems, Expo. Math., Volume 24 (2006) no. 2, pp. 127-159

[33] Witten, E. Supersymmetry and Morse theory, J. Differential Geom., Volume 17 (1982) no. 4, p. 661-692 (1983)

Cité par Sources :