Approximate spectral theory and wave propagation in quasi-periodic media
Journées équations aux dérivées partielles (2017), Exposé no. 5, 12 p.

Voir la notice de l'acte provenant de la source Numdam

In this article we make specific in the quasi-periodic setting the general Floquet-Bloch theory we have introduced for stationary ergodic operators together with the associated approximate spectral theory. As an application we consider the long-time behavior of the Schrödinger flow with a quasi-periodic potential (in the regime of small intensity of the discorder), and the long-time behavior of the wave equation with quasi-periodic coefficients (in the homogenization regime).

Publié le :
DOI : 10.5802/jedp.655

Benoit, Antoine 1 ; Duerinckx, Mitia 2 ; Gloria, Antoine 3 ; Shirley, Christopher 2

1 Université du Littoral Laboratoire de Mathématiques Pures et Appliquées Bâtiment Point Carré 50 Rue Ferdinand Buisson 62100 Calais, France
2 Université Libre de Bruxelles (ULB) Département de mathématiques Campus Plaine CP 213 Boulevard du Triomphe B-1050 Bruxelles, Belgique
3 Sorbonne Université UMR 7598, Laboratoire Jacques-Louis Lions F-75005, Paris, France
@incollection{JEDP_2017____A5_0,
     author = {Benoit, Antoine and Duerinckx, Mitia and Gloria, Antoine and Shirley, Christopher},
     title = {Approximate spectral theory  and wave propagation in quasi-periodic media},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:5},
     pages = {1--12},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2017},
     doi = {10.5802/jedp.655},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.655/}
}
TY  - JOUR
AU  - Benoit, Antoine
AU  - Duerinckx, Mitia
AU  - Gloria, Antoine
AU  - Shirley, Christopher
TI  - Approximate spectral theory  and wave propagation in quasi-periodic media
JO  - Journées équations aux dérivées partielles
N1  - talk:5
PY  - 2017
SP  - 1
EP  - 12
PB  - Groupement de recherche 2434 du CNRS
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jedp.655/
DO  - 10.5802/jedp.655
LA  - en
ID  - JEDP_2017____A5_0
ER  - 
%0 Journal Article
%A Benoit, Antoine
%A Duerinckx, Mitia
%A Gloria, Antoine
%A Shirley, Christopher
%T Approximate spectral theory  and wave propagation in quasi-periodic media
%J Journées équations aux dérivées partielles
%Z talk:5
%D 2017
%P 1-12
%I Groupement de recherche 2434 du CNRS
%U http://geodesic.mathdoc.fr/articles/10.5802/jedp.655/
%R 10.5802/jedp.655
%G en
%F JEDP_2017____A5_0
Benoit, Antoine; Duerinckx, Mitia; Gloria, Antoine; Shirley, Christopher. Approximate spectral theory  and wave propagation in quasi-periodic media. Journées équations aux dérivées partielles (2017), Exposé no. 5, 12 p. doi : 10.5802/jedp.655. http://geodesic.mathdoc.fr/articles/10.5802/jedp.655/

[1] G. Allaire, M. Briane, and M. Vanninathan. A comparison between two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures. SeMA Journal, pages 1–23, 2016. in press.

[2] J. Asch and A. Knauf. Motion in periodic potentials. Nonlinearity, 11(1):175–200, 1998.

[3] A. Benoit and A. Gloria. Long-time homogenization and asymptotic ballistic transport of classical waves. Ann. Scientifiques de l’ENS. In press.

[4] J. Bourgain. Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, 158, Princeton University Press, Princeton, 2005.

[5] J. Bourgain. Anderson localization for quasi-periodic lattice Schrödinger operators on d , d arbitrary. Geom. Funct. Anal., 17(3): 682–706, 2007.

[6] J. Bourgain, M. Goldstein, and W. Schlag. Anderson localization for Schrödinger operators on 2 with quasi-periodic potential. Acta Math., 188(1):41–86, 2002.

[7] D. Damanik. Schrödinger operators with dynamically defined potentials. Ergodic Theory Dynam. Systems, 37(6):1681–1764, 2017.

[8] M. Duerinckx, A. Gloria, and C. Shirley. Approximate spectral theory and asymptotic ballistic transport of quantum waves. In preparation.

[9] A. Gloria and Z. Habibi. Reduction in the resonance error in numerical homogenizaton II: correctors and extrapolation. Foundations of Computational Mathematics, 16:217–296, 2016.

[10] A. Gloria, S. Neukamm, and F. Otto. A regularity theory for random elliptic operators. Preliminary version, arXiv:1409.2678v3, 2014.

[11] S. Jitomirskaya and C. Marx Dynamics and spectral theory of quasi-periodic Schrödinger-type operators. Ergodic Theory Dynam. Systems, 37(8):2353–2393, 2017.

[12] Y. Karpeshina and R. Shterenberg. Extended states for the Schrödinger operator with quasi-periodic potential in dimension two. arXiv:1408.5660, 2014.

[13] T. Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition.

[14] P. Kuchment. An overview of periodic elliptic operators. Bull. Amer. Math. Soc. (N.S.), 53(3):343–414, 2016.

[15] S. M. Kozlov. Averaging of differential operators with almost periodic rapidly oscillating coefficients. Mat. Sb. (N.S.), 107(149)(2):199–217, 317, 1978.

[16] M. Reed and B. Simon. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978.

[17] F. Rellich. Perturbation theory of eigenvalue problems. Gordon and Breach Science Publishers, New York-London-Paris, 1969.

Cité par Sources :