A note on KAM for gravity-capillary water waves
Journées équations aux dérivées partielles (2016), Exposé no. 7, 18 p.

Voir la notice de l'acte provenant de la source Numdam

We present the result and the ideas of the recent paper [8] (obtained in collaboration with M. Berti) concerning the existence of Cantor families of small amplitude time quasi-periodic standing wave solutions (i.e. periodic and even in the space variable x) of a 2-dimensional ocean, with infinite depth, in irrotational regime, under the action of gravity and surface tension at the free boundary. These quasi-periodic solutions are linearly stable.

Publié le :
DOI : 10.5802/jedp.648
Classification : 76B15, 37K55, 76D45, 37K50
Keywords: KAM for PDEs, water waves, quasi-periodic solutions.

Montalto, Riccardo 1

1 University of Zürich Winterthurerstrasse 190 CH-8057, Zürich Switzerland
@incollection{JEDP_2016____A7_0,
     author = {Montalto, Riccardo},
     title = {A note on {KAM} for gravity-capillary water waves},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:7},
     pages = {1--18},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2016},
     doi = {10.5802/jedp.648},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.648/}
}
TY  - JOUR
AU  - Montalto, Riccardo
TI  - A note on KAM for gravity-capillary water waves
JO  - Journées équations aux dérivées partielles
N1  - talk:7
PY  - 2016
SP  - 1
EP  - 18
PB  - Groupement de recherche 2434 du CNRS
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jedp.648/
DO  - 10.5802/jedp.648
LA  - en
ID  - JEDP_2016____A7_0
ER  - 
%0 Journal Article
%A Montalto, Riccardo
%T A note on KAM for gravity-capillary water waves
%J Journées équations aux dérivées partielles
%Z talk:7
%D 2016
%P 1-18
%I Groupement de recherche 2434 du CNRS
%U http://geodesic.mathdoc.fr/articles/10.5802/jedp.648/
%R 10.5802/jedp.648
%G en
%F JEDP_2016____A7_0
Montalto, Riccardo. A note on KAM for gravity-capillary water waves. Journées équations aux dérivées partielles (2016), Exposé no. 7, 18 p. doi : 10.5802/jedp.648. http://geodesic.mathdoc.fr/articles/10.5802/jedp.648/

[1] Alazard T., Baldi P. Gravity capillary standing water waves. Arch. Rat. Mech. Anal., 217, 3, 741-830, 2015.

[2] Baldi P., Berti M., Montalto R. A note on KAM theory for quasi-linear and fully nonlinear KdV. Rend. Lincei Mat. Appl., 24, 437-450, 2013.

[3] Baldi P., Berti M., Montalto R. KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Math. Annalen, 359, 1-2, 471-536, 2014.

[4] Baldi P., Berti M., Montalto R. KAM for quasi-linear KdV, C. R. Acad. Sci. Paris, Ser. I 352, 603-607, 2014.

[5] Baldi P., Berti M., Montalto R. KAM for autonomous quasi-linear perturbations of KdV. Ann. I. H. Poincaré (C) Anal. Non Linéaire, 33, 1589-1638, 2016.

[6] Baldi P., Berti M., Montalto R. KAM for autonomous quasi-linear perturbations of mKdV. Bollettino Unione Matematica Italiana, 9, 143-188, 2016.

[7] Bambusi D., Berti M., Magistrelli E. Degenerate KAM theory for partial differential equations. Journal Diff. Equations, 250, 8, 3379-3397, 2011.

[8] Berti M., Montalto R. Quasi-periodic standing wave solutions of gravity-capillary water waves, arXiv:1602.02411 .

[9] Berti M., Biasco L., Procesi M. KAM theory for the Hamiltonian derivative wave equation. Ann. Sci. Éc. Norm. Supér. (4), 46(2):301-373, 2013.

[10] Berti M., Biasco L., Procesi M. KAM for Reversible Derivative Wave Equations. Arch. Rat. Mech. Anal., 212(3):905-955, 2014.

[11] Berti M., Bolle P. A Nash-Moser approach to KAM theory. Fields Institute Communications, 255-284, special volume “Hamiltonian PDEs and Applications”, 2015.

[12] Brezis H., Coron J.-M., Nirenberg L., Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math. 33, no. 5, 667–684, 1980.

[13] Craig W., Nicholls D. Travelling two and three dimensional capillary gravity water waves. SIAM J. Math. Anal., 32(2):323–359 (electronic), 2000.

[14] Craig W., Sulem C. Numerical simulation of gravity waves. J. Comput. Phys., 108(1):73-83, 1993.

[15] Craig W., Sulem C. Normal form transformations for capillary-gravity water waves. Field Institute Communications, 73-110, special volume “Hamiltonian PDEs and Applications”, 2015.

[16] Craig W., Wayne C.E., Newton’s method and periodic solutions of nonlinear wave equation, Comm. Pure Appl. Math. 46, 1409-1498, 1993.

[17] Fejoz J. Démonstration du théoréme d’ Arnold sur la stabilité du systéme planétaire (d’ aprés Herman). Ergodic Theory Dynam. Systems 24 (5), 1521-1582, 2004.

[18] Feola R., Procesi M. Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations, J. Diff. Eq., 259, no. 7, 3389-3447, 2015.

[19] Iooss G., Plotnikov P. Existence of multimodal standing gravity waves. J. Math. Fluid Mech., 7, 349–364, 2005.

[20] Iooss G., Plotnikov P. Multimodal standing gravity waves: a completely resonant system. J. Math. Fluid Mech., 7(suppl. 1), 110-126, 2005.

[21] Iooss G., Plotnikov P. Small divisor problem in the theory of three-dimensional water gravity waves. Mem. Amer. Math. Soc., 200(940):viii+128, 2009.

[22] Iooss G., Plotnikov P. Asymmetrical tridimensional travelling gravity waves. Arch. Rat. Mech. Anal., 200(3):789-880, 2011.

[23] Iooss G., Plotnikov P., Toland J. Standing waves on an infinitely deep perfect fluid under gravity. Arch. Rat. Mech. Anal., 177(3):367–478, 2005.

[24] Levi-Civita T. Détermination rigoureuse des ondes permanentes d’ampleur finie. Math. Ann., 93 , pp. 264-314, 1925.

[25] Liu J., Yuan X. A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations. Comm. Math. Phys., 307(3), 629–673, 2011.

[26] Kappeler T., Pöschel J. KAM and KdV, Springer, 2003.

[27] Kuksin S., Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum, Funktsional. Anal. i Prilozhen. 21, no. 3, 22–37, 95, 1987.

[28] Kuksin S. Analysis of Hamiltonian PDEs, volume 19 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2000.

[29] Montalto R. Quasi-periodic solutions of forced Kirchhoff equation. NoDEA, Nonlinear Differ. Equ. Appl., in press, DOI: 10.1007/s00030-017-0432-3, 2017.

[30] Plotnikov P., Toland J. Nash-Moser theory for standing water waves. Arch. Rat. Mech. Anal., 159(1):1–83, 2001.

[31] Rabinowitz P., Periodic solutions of nonlinear hyperbolic partial differential equations, Part I. Comm. Pure Appl. Math. 20, 145–205 (1967)

[32] Rabinowitz P., Periodic solutions of nonlinear hyperbolic partial differential equations. Part II. Comm. Pure Appl. Math. 22, 15–39 (1969)

[33] Rüssmann H. Invariant tori in non-degenerate nearly integrable Hamiltonian systems. Regul. Chaotic Dyn. 6 (2), 119-204, 2001.

[34] Wayne E., Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys. 127, 479-528, 1990.

[35] Zakharov V. Stability of periodic waves of finite amplitude on the surface of a deep fluid. Journal of Applied Mechanics and Technical Physics, 9(2):190–194, 1968.

[36] Zhang J., Gao M., Yuan X. KAM tori for reversible partial differential equations. Nonlinearity, 24(4):1189-1228, 2011.

Cité par Sources :