On exponential convergence to a stationary measure for a class of random dynamical systems
Journées équations aux dérivées partielles (2001), article no. 9, 10 p. Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'acte

For a class of random dynamical systems which describe dissipative nonlinear PDEs perturbed by a bounded random kick-force, I propose a “direct proof” of the uniqueness of the stationary measure and exponential convergence of solutions to this measure, by showing that the transfer-operator, acting in the space of probability measures given the Kantorovich metric, defines a contraction of this space.

@incollection{JEDP_2001____A9_0,
     author = {Kuksin, Sergei B.},
     title = {On exponential convergence to a stationary measure for a class of random dynamical systems},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {9},
     pages = {1--10},
     year = {2001},
     publisher = {Universit\'e de Nantes},
     doi = {10.5802/jedp.593},
     mrnumber = {1843410},
     zbl = {01808685},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.593/}
}
TY  - JOUR
AU  - Kuksin, Sergei B.
TI  - On exponential convergence to a stationary measure for a class of random dynamical systems
JO  - Journées équations aux dérivées partielles
PY  - 2001
SP  - 1
EP  - 10
PB  - Université de Nantes
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jedp.593/
DO  - 10.5802/jedp.593
LA  - en
ID  - JEDP_2001____A9_0
ER  - 
%0 Journal Article
%A Kuksin, Sergei B.
%T On exponential convergence to a stationary measure for a class of random dynamical systems
%J Journées équations aux dérivées partielles
%D 2001
%P 1-10
%I Université de Nantes
%U http://geodesic.mathdoc.fr/articles/10.5802/jedp.593/
%R 10.5802/jedp.593
%G en
%F JEDP_2001____A9_0
Kuksin, Sergei B. On exponential convergence to a stationary measure for a class of random dynamical systems. Journées équations aux dérivées partielles (2001), article  no. 9, 10 p.. doi: 10.5802/jedp.593

Cité par Sources :