On the Bethe-Sommerfeld conjecture
Journées équations aux dérivées partielles (2000), article no. 17, 13 p.
Voir la notice de l'acte provenant de la source Numdam
We consider the operator in , of the form with a function periodic with respect to a lattice in . We prove that the number of gaps in the spectrum of is finite if . Previously the finiteness of the number of gaps was known for . Various approaches to this problem are discussed.
@incollection{JEDP_2000____A17_0, author = {Parnovski, Leonid and Sobolev, Alexander V.}, title = {On the {Bethe-Sommerfeld} conjecture}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {17}, pages = {1--13}, publisher = {Universit\'e de Nantes}, year = {2000}, doi = {10.5802/jedp.581}, mrnumber = {2002i:35137}, zbl = {01808707}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.581/} }
TY - JOUR AU - Parnovski, Leonid AU - Sobolev, Alexander V. TI - On the Bethe-Sommerfeld conjecture JO - Journées équations aux dérivées partielles PY - 2000 SP - 1 EP - 13 PB - Université de Nantes UR - http://geodesic.mathdoc.fr/articles/10.5802/jedp.581/ DO - 10.5802/jedp.581 LA - en ID - JEDP_2000____A17_0 ER -
Parnovski, Leonid; Sobolev, Alexander V. On the Bethe-Sommerfeld conjecture. Journées équations aux dérivées partielles (2000), article no. 17, 13 p.. doi: 10.5802/jedp.581
Cité par Sources :