On the Bethe-Sommerfeld conjecture
Journées équations aux dérivées partielles (2000), article no. 17, 13 p.

Voir la notice de l'acte provenant de la source Numdam

We consider the operator in d ,d2, of the form H=(-Δ) l +V,l>0 with a function V periodic with respect to a lattice in d . We prove that the number of gaps in the spectrum of H is finite if 8l>d+3. Previously the finiteness of the number of gaps was known for 4l>d+1. Various approaches to this problem are discussed.

@incollection{JEDP_2000____A17_0,
     author = {Parnovski, Leonid and Sobolev, Alexander V.},
     title = {On the {Bethe-Sommerfeld} conjecture},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {17},
     pages = {1--13},
     publisher = {Universit\'e de Nantes},
     year = {2000},
     doi = {10.5802/jedp.581},
     mrnumber = {2002i:35137},
     zbl = {01808707},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.581/}
}
TY  - JOUR
AU  - Parnovski, Leonid
AU  - Sobolev, Alexander V.
TI  - On the Bethe-Sommerfeld conjecture
JO  - Journées équations aux dérivées partielles
PY  - 2000
SP  - 1
EP  - 13
PB  - Université de Nantes
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jedp.581/
DO  - 10.5802/jedp.581
LA  - en
ID  - JEDP_2000____A17_0
ER  - 
%0 Journal Article
%A Parnovski, Leonid
%A Sobolev, Alexander V.
%T On the Bethe-Sommerfeld conjecture
%J Journées équations aux dérivées partielles
%D 2000
%P 1-13
%I Université de Nantes
%U http://geodesic.mathdoc.fr/articles/10.5802/jedp.581/
%R 10.5802/jedp.581
%G en
%F JEDP_2000____A17_0
Parnovski, Leonid; Sobolev, Alexander V. On the Bethe-Sommerfeld conjecture. Journées équations aux dérivées partielles (2000), article  no. 17, 13 p.. doi: 10.5802/jedp.581

Cité par Sources :