Propagation of singularities in many-body scattering in the presence of bound states
Journées équations aux dérivées partielles (1999), article no. 16, 20 p.

Voir la notice de l'acte provenant de la source Numdam

In these lecture notes we describe the propagation of singularities of tempered distributional solutions u𝒮 ' of (H-λ)u=0, where H is a many-body hamiltonian H=Δ+V, Δ0, V= a V a , and λ is not a threshold of H, under the assumption that the inter-particle (e.g. two-body) interactions V a are real-valued polyhomogeneous symbols of order -1 (e.g. Coulomb-type with the singularity at the origin removed). Here the term “singularity” provides a microlocal description of the lack of decay at infinity. Our result is then that the set of singularities of u is a union of maximally extended broken bicharacteristics of H. These are curves in the characteristic variety of H, which can be quite complicated due to the existence of bound states. We use this result to describe the wave front relation of the S-matrices. Here we only present the statement of the results and sketch some of the ideas in proving them, the complete details will appear elsewhere.

@incollection{JEDP_1999____A16_0,
     author = {Vasy, Andr\'as},
     title = {Propagation of singularities in many-body scattering in the presence of bound states},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {16},
     pages = {1--20},
     publisher = {Universit\'e de Nantes},
     year = {1999},
     doi = {10.5802/jedp.560},
     mrnumber = {2000j:81284},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.560/}
}
TY  - JOUR
AU  - Vasy, András
TI  - Propagation of singularities in many-body scattering in the presence of bound states
JO  - Journées équations aux dérivées partielles
PY  - 1999
SP  - 1
EP  - 20
PB  - Université de Nantes
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jedp.560/
DO  - 10.5802/jedp.560
LA  - en
ID  - JEDP_1999____A16_0
ER  - 
%0 Journal Article
%A Vasy, András
%T Propagation of singularities in many-body scattering in the presence of bound states
%J Journées équations aux dérivées partielles
%D 1999
%P 1-20
%I Université de Nantes
%U http://geodesic.mathdoc.fr/articles/10.5802/jedp.560/
%R 10.5802/jedp.560
%G en
%F JEDP_1999____A16_0
Vasy, András. Propagation of singularities in many-body scattering in the presence of bound states. Journées équations aux dérivées partielles (1999), article  no. 16, 20 p.. doi: 10.5802/jedp.560

Cité par Sources :