An Hadamard maximum principle for the biplacian on hyperbolic manifolds
Journées équations aux dérivées partielles (1999), article no. 3, 5 p.

Voir la notice de l'acte provenant de la source Numdam

We prove the existence of a maximum principle for operators of the type Δω-1Δ, for weights ω with logω subharmonic. It is associated with certain simply connected subdomains that are produced by a Hele-Shaw flow emanating from a given point in the domain. For constant weight, these are the circular disks in the domain. The principle is equivalent to the following statement. THEOREM. Suppose ω is logarithmically subharmonic on the unit disk, and that the weight times area measure is a reproducing measure (for the harmonic functions). Then the Green function for the Dirichlet problem associated with Δω -1 Δ on the unit disk is positive.

@incollection{JEDP_1999____A3_0,
     author = {Hedenmalm, H\r{a}kan},
     title = {An {Hadamard} maximum principle for the biplacian on hyperbolic manifolds},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {3},
     pages = {1--5},
     publisher = {Universit\'e de Nantes},
     year = {1999},
     doi = {10.5802/jedp.547},
     mrnumber = {1718958},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.547/}
}
TY  - JOUR
AU  - Hedenmalm, Håkan
TI  - An Hadamard maximum principle for the biplacian on hyperbolic manifolds
JO  - Journées équations aux dérivées partielles
PY  - 1999
SP  - 1
EP  - 5
PB  - Université de Nantes
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jedp.547/
DO  - 10.5802/jedp.547
LA  - en
ID  - JEDP_1999____A3_0
ER  - 
%0 Journal Article
%A Hedenmalm, Håkan
%T An Hadamard maximum principle for the biplacian on hyperbolic manifolds
%J Journées équations aux dérivées partielles
%D 1999
%P 1-5
%I Université de Nantes
%U http://geodesic.mathdoc.fr/articles/10.5802/jedp.547/
%R 10.5802/jedp.547
%G en
%F JEDP_1999____A3_0
Hedenmalm, Håkan. An Hadamard maximum principle for the biplacian on hyperbolic manifolds. Journées équations aux dérivées partielles (1999), article  no. 3, 5 p.. doi: 10.5802/jedp.547

Cité par Sources :