The Neumann problem for the heat equation in non-cylindrical domains
Journées équations aux dérivées partielles (1998), article no. 6, 7 p.
Voir la notice de l'acte provenant de la source Numdam
I shall discuss joint work with John L. Lewis on the solvability of boundary value problems for the heat equation in non-cylindrical (i.e., time-varying) domains, whose boundaries are in some sense minimally smooth in both space and time. The emphasis will be on the Neumann problem with data in . A somewhat surprising feature of our results is that, in contrast to the cylindrical case, the optimal results hold when , with the situation getting progressively worse as approaches . In particular, in our setting, the Neumann problem fails to be solvable when the data is taken to belong to the Hardy space .
@incollection{JEDP_1998____A6_0, author = {Hofmann, Steve and Lewis, John L.}, title = {The ${L}^p$ {Neumann} problem for the heat equation in non-cylindrical domains}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {6}, pages = {1--7}, publisher = {Universit\'e de Nantes}, year = {1998}, doi = {10.5802/jedp.535}, mrnumber = {1640379}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.535/} }
TY - JOUR AU - Hofmann, Steve AU - Lewis, John L. TI - The ${L}^p$ Neumann problem for the heat equation in non-cylindrical domains JO - Journées équations aux dérivées partielles PY - 1998 SP - 1 EP - 7 PB - Université de Nantes UR - http://geodesic.mathdoc.fr/articles/10.5802/jedp.535/ DO - 10.5802/jedp.535 LA - en ID - JEDP_1998____A6_0 ER -
%0 Journal Article %A Hofmann, Steve %A Lewis, John L. %T The ${L}^p$ Neumann problem for the heat equation in non-cylindrical domains %J Journées équations aux dérivées partielles %D 1998 %P 1-7 %I Université de Nantes %U http://geodesic.mathdoc.fr/articles/10.5802/jedp.535/ %R 10.5802/jedp.535 %G en %F JEDP_1998____A6_0
Hofmann, Steve; Lewis, John L. The ${L}^p$ Neumann problem for the heat equation in non-cylindrical domains. Journées équations aux dérivées partielles (1998), article no. 6, 7 p.. doi: 10.5802/jedp.535
Cité par Sources :