On the global existence for the axisymmetric Euler equations
Journées équations aux dérivées partielles (2008), article no. 4, 17 p.

Voir la notice de l'acte provenant de la source Numdam

This paper deals with the global well-posedness of the 3D axisymmetric Euler equations for initial data lying in critical Besov spaces B p,1 1+3 p . In this case the BKM criterion is not known to be valid and to circumvent this difficulty we use a new decomposition of the vorticity .

DOI : 10.5802/jedp.48

Abidi, Hammadi 1 ; Hmidi, Taoufik 1 ; Keraani, Sahbi 1

1 IRMAR, Université de Rennes 1, Campus de Beaulieu, 35 042 Rennes cedex. France
@incollection{JEDP_2008____A4_0,
     author = {Abidi, Hammadi and Hmidi, Taoufik and Keraani, Sahbi},
     title = {On the global existence for the axisymmetric {Euler} equations},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {4},
     pages = {1--17},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2008},
     doi = {10.5802/jedp.48},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.48/}
}
TY  - JOUR
AU  - Abidi, Hammadi
AU  - Hmidi, Taoufik
AU  - Keraani, Sahbi
TI  - On the global existence for the axisymmetric Euler equations
JO  - Journées équations aux dérivées partielles
PY  - 2008
SP  - 1
EP  - 17
PB  - Groupement de recherche 2434 du CNRS
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jedp.48/
DO  - 10.5802/jedp.48
LA  - en
ID  - JEDP_2008____A4_0
ER  - 
%0 Journal Article
%A Abidi, Hammadi
%A Hmidi, Taoufik
%A Keraani, Sahbi
%T On the global existence for the axisymmetric Euler equations
%J Journées équations aux dérivées partielles
%D 2008
%P 1-17
%I Groupement de recherche 2434 du CNRS
%U http://geodesic.mathdoc.fr/articles/10.5802/jedp.48/
%R 10.5802/jedp.48
%G en
%F JEDP_2008____A4_0
Abidi, Hammadi; Hmidi, Taoufik; Keraani, Sahbi. On the global existence for the axisymmetric Euler equations. Journées équations aux dérivées partielles (2008), article  no. 4, 17 p. doi : 10.5802/jedp.48. http://geodesic.mathdoc.fr/articles/10.5802/jedp.48/

[1] J. T. Beale, T. Kato, A. Majda, Remarks on the Breakdown of Smooth Solutions for the 3D Euler Equations, Comm. Math. Phys. 94 (1984) 61-66. | Zbl | MR

[2] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, 1976. | Zbl | MR

[3] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. de l’École Norm. Sup. 14 (1981) 209-246. | Zbl | MR | mathdoc-id

[4] D. Chae, Local existence and blow-up criterion for the Euler equations in the Besov spaces, Asymptot. Anal. 38 (2004), no. 3-4, 339-358. | Zbl | MR

[5] J.-Y. Chemin, Perfect incompressible Fluids, Clarendon press, Oxford, 1998. | Zbl | MR

[6] P. Constantin, C. Fefferman, A. Majda, J. Geometric constraints on potentially singular solutions for the 3D Euler equations, Comm. Partial Diff. Eqs. 21 (1996), no. 3-4, 559-571. | Zbl | MR

[7] R. Danchin, Axisymmetric incompressible flows with bounded vorticity, Russian Math. Surveys 62 (2007), no 3, 73-94. | Zbl | MR

[8] T. Hmidi, S. Keraani, Incompressible viscous flows in borderline Besov spaces, Arch. Ration. Mech. Anal. 189 (2008), no. 2, 283-300. | Zbl | MR

[9] T. Kato, Nonstationary flows of viscous and ideal fluids in 3 , J. Functional analysis, 9 (1972), 296-305. | Zbl | MR

[10] R. O’Neil, Convolution operators and L(p,q) spaces, Duke Math. J. 30 (1963), 129-142. | Zbl | MR

[11] H. C. Pak, Y. J. Park, Existence of solution for the Euler equations in a critical Besov space B ,1 1 ( n ), Comm. Partial Diff. Eqs, 29 (2004) 1149-1166. | Zbl | MR

[12] J. Peetre, New thoughts on Besov spaces, Duke University Mathematical Series 1, Durham N. C. 1976. | Zbl | MR

[13] X. Saint Raymond, Remarks on axisymmetric solutions of the incompressible Euler system, Comm. Partial Differential Equations 19 (1994), no. 1-2, 321-334. | Zbl | MR

[14] T. Shirota, T. Yanagisawa, Note on global existence for axially symmetric solutions of the Euler system, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), no. 10, 299–304. | Zbl | MR

[15] M. R. Ukhovskii, V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, Prikl. Mat. Meh. 32 (1968), no. 1, 59-69. | Zbl | MR

[16] M. Vishik, Hydrodynamics in Besov Spaces, Arch. Rational Mech. Anal 145, 197-214, 1998. | Zbl | MR

Cité par Sources :