Strichartz Estimates for the Schrödinger Equation with small Magnetic Potential
Journées équations aux dérivées partielles (2005), article no. 4, 17 p.

Voir la notice de l'acte provenant de la source Numdam

@incollection{JEDP_2005____A4_0,
     author = {Georgiev, Vladimir and Stefanov, Atanas and Tarulli, Mirko},
     title = {Strichartz {Estimates} for the {Schr\"odinger} {Equation} with small {Magnetic} {Potential}},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {4},
     pages = {1--17},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2005},
     doi = {10.5802/jedp.17},
     mrnumber = {2352773},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.17/}
}
TY  - JOUR
AU  - Georgiev, Vladimir
AU  - Stefanov, Atanas
AU  - Tarulli, Mirko
TI  - Strichartz Estimates for the Schrödinger Equation with small Magnetic Potential
JO  - Journées équations aux dérivées partielles
PY  - 2005
SP  - 1
EP  - 17
PB  - Groupement de recherche 2434 du CNRS
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jedp.17/
DO  - 10.5802/jedp.17
LA  - en
ID  - JEDP_2005____A4_0
ER  - 
%0 Journal Article
%A Georgiev, Vladimir
%A Stefanov, Atanas
%A Tarulli, Mirko
%T Strichartz Estimates for the Schrödinger Equation with small Magnetic Potential
%J Journées équations aux dérivées partielles
%D 2005
%P 1-17
%I Groupement de recherche 2434 du CNRS
%U http://geodesic.mathdoc.fr/articles/10.5802/jedp.17/
%R 10.5802/jedp.17
%G en
%F JEDP_2005____A4_0
Georgiev, Vladimir; Stefanov, Atanas; Tarulli, Mirko. Strichartz Estimates for the Schrödinger Equation with small Magnetic Potential. Journées équations aux dérivées partielles (2005), article  no. 4, 17 p. doi : 10.5802/jedp.17. http://geodesic.mathdoc.fr/articles/10.5802/jedp.17/

[1] S. Agmon. Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2(2):151–218, 1975. | Zbl | MR | mathdoc-id

[2] P. Alsholm and G. Schmidt. Spectral and scattering theory for Schrödinger operators. Arch. Rational Mech. Anal., 40:281–311, 1970/1971. | Zbl | MR

[3] A. A. Balinsky, W. D. Evans, R. T. Lewis, On the number of negative eigenvalues of Schrödinger operators with an Aharonov-Bohm magnetic field. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), no. 2014, 2481–2489. | Zbl | MR

[4] J. A. Barcelo, A. Ruiz, and L. Vega. Weighted estimates for the Helmholtz equation and some applications. J. Funct. Anal. 150 (1997), 356–382. | Zbl | MR

[5] J. Bergh and J. Löfström, Interpolation spaces, Springer Berlin, Heidelberg, New York, 1976. | Zbl | MR

[6] V. Georgiev and M. Tarulli. Scale invariant energy smoothing estimates for the Scrödinger Equation with small Magnetic Potential. Preprint Universitá di Pisa, 2005.

[7] J. Ginibre and G. Velo. Generalized Strichartz inequalities for the wave equation. J. Funct. Anal., 133(1) (1995) 50–68. | Zbl | MR

[8] L. Hörmander, The analysis of linear partial differential operators. II. Differential operators with constant coefficients. Fundamental Principles of Mathematical Sciences, 257. Springer-Verlag, Berlin, 1983. | Zbl | MR

[9] A. Ionescu, C. Kenig, Well - posedness and local smoothing of solutions of Schrödinger equations preprint 2005.

[10] C. Kenig, G. Ponce, L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33–69. | Zbl | MR

[11] C. Kenig, G. Ponce, L. Vega, Small solutions to nonlinear Schrödinger equations., Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), no. 3, 255–288. | Zbl | MR | mathdoc-id

[12] C. Kenig, G. Ponce, L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations., Invent. Math., 134 (1998), no. 3, 489–545. | Zbl | MR

[13] M. Keel and T. Tao. Endpoint Strichartz estimates. Amer. J. Math., 120(5):955–980, 1998. | Zbl | MR

[14] I. Rodnianski, T. Tao, Global regularity for the Maxwell-Klein-Gordon equation with small critical Sobolev norm in high dientions. Comm. Math. Phys. 2005. | Zbl | MR

[15] A. Ruiz, L. Vega On local regularity of Schrödinger equations. Int. Math. Research Notes 1, 1993, 13 – 27 . | Zbl | MR

[16] A. Ruiz, L. Vega Local regularity of solutions to wave equations with time–dependent potentials. Duke Math. Journal 76, 1, 1994, 913 – 940. | Zbl | MR

[17] G. Staffilani, D. Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients. Comm. Partial Differential Equations 27 (2002), no. 7-8, 1337–1372. | Zbl | MR

[18] E. Stein, Harmonic Analysis. Princeton Mathematical Series, Princeton Univ. Press, Princeton. | Zbl

[19] A. Stefanov Strichartz estimates for the magnetic Schrödinger equation preprint 2004. | Zbl

[20] M. Tarulli. Smoothing Estimates for Scalar Field with Electromagnetic Perturbation. EJDE. Vol. 2004(2004), No. 146, pp. 1-14. | Zbl

Cité par Sources :