Schrödinger operator with magnetic field in domain with corners
Journées équations aux dérivées partielles (2005), article no. 2, 12 p.

Voir la notice de l'acte provenant de la source Numdam

We present here a simplified version of results obtained with F. Alouges, M. Dauge, B. Helffer and G. Vial (cf [4, 7, 9]). We analyze the Schrödinger operator with magnetic field in an infinite sector. This study allows to determine accurate approximation of the low-lying eigenpairs of the Schrödinger operator in domains with corners. We complete this analysis with numerical experiments.

DOI : 10.5802/jedp.15

Bonnaillie Noël, Virginie 1

1 IRMAR, Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
@incollection{JEDP_2005____A2_0,
     author = {Bonnaillie No\"el, Virginie},
     title = {Schr\"odinger operator with magnetic field in domain with corners},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {2},
     pages = {1--12},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2005},
     doi = {10.5802/jedp.15},
     mrnumber = {2352771},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.15/}
}
TY  - JOUR
AU  - Bonnaillie Noël, Virginie
TI  - Schrödinger operator with magnetic field in domain with corners
JO  - Journées équations aux dérivées partielles
PY  - 2005
SP  - 1
EP  - 12
PB  - Groupement de recherche 2434 du CNRS
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jedp.15/
DO  - 10.5802/jedp.15
LA  - en
ID  - JEDP_2005____A2_0
ER  - 
%0 Journal Article
%A Bonnaillie Noël, Virginie
%T Schrödinger operator with magnetic field in domain with corners
%J Journées équations aux dérivées partielles
%D 2005
%P 1-12
%I Groupement de recherche 2434 du CNRS
%U http://geodesic.mathdoc.fr/articles/10.5802/jedp.15/
%R 10.5802/jedp.15
%G en
%F JEDP_2005____A2_0
Bonnaillie Noël, Virginie. Schrödinger operator with magnetic field in domain with corners. Journées équations aux dérivées partielles (2005), article  no. 2, 12 p. doi : 10.5802/jedp.15. http://geodesic.mathdoc.fr/articles/10.5802/jedp.15/

[1] Agmon, S. Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N-body Schrödinger operators, vol. 29 of Mathematical Notes. Princeton University Press, Princeton, NJ, 1982. | Zbl | MR

[2] Alouges, F., and Bonnaillie, V. Analyse numérique de la supraconductivité. C. R. Math. Acad. Sci. Paris 337, 8 (2003), 543–548. | Zbl | MR

[3] Bernoff, A., and Sternberg, P. Onset of superconductivity in decreasing fields for general domains. J. Math. Phys. 39, 3 (1998), 1272–1284. | Zbl | MR

[4] Bonnaillie, V. Analyse mathématique de la supraconductivité dans un domaine à coins; méthodes semi-classiques et numériques. Thèse de doctorat, Université Paris XI - Orsay, 2003.

[5] Bonnaillie, V. On the fundamental state for a Schrödinger operator with magnetic field in a domain with corners. C. R. Math. Acad. Sci. Paris 336, 2 (2003), 135–140. | Zbl | MR

[6] Bonnaillie, V. Superconductivity in general domains. Prépublications d’Orsay 2004-09, 2004.

[7] Bonnaillie, V. On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners. Asymptot. Anal. 41, 3-4 (2005), 215–258. | Zbl | MR

[8] Bonnaillie Noël, V. A posteriori error estimator for the eigenvalue problem associated to the Schrödinger operator with magnetic field. Numer. Math. 99, 2 (2004), 325–348. | Zbl | MR

[9] Bonnaillie Noël, V., and Dauge, M. Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corner. In preparation, 2005. | MR

[10] Cycon, H. L., Froese, R. G., Kirsch, W., and Simon, B. Schrödinger operators with application to quantum mechanics and global geometry, study ed. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1987. | Zbl | MR

[11] Dauge, M., and Helffer, B. Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators. J. Differential Equations 104, 2 (1993), 243–262. | Zbl | MR

[12] Fournais, S., and Helffer, B. Accurate eigenvalue estimates for the magnetic neumann laplacian. To appear in Annales Inst. Fourier (2005). | Zbl | mathdoc-id

[13] Ginzburg, V., and Landau, L. On the theory of the superconductivity. Soviet. Phys. JETP 20 (1950), 1064–1082.

[14] Helffer, B. Semi-classical analysis for the Schrödinger operator and applications, vol. 1336 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1988. | Zbl | MR

[15] Helffer, B., and Mohamed, A. Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells. J. Funct. Anal. 138, 1 (1996), 40–81. | Zbl | MR

[16] Helffer, B., and Morame, A. Magnetic bottles in connection with superconductivity. J. Funct. Anal. 185, 2 (2001), 604–680. | Zbl | MR

[17] Helffer, B., and Sjöstrand, J. Multiple wells in the semiclassical limit. I. Comm. Partial Differential Equations 9, 4 (1984), 337–408. | Zbl | MR

[18] Jadallah, H. T. The onset of superconductivity in a domain with a corner. J. Math. Phys. 42, 9 (2001), 4101–4121. | Zbl | MR

[19] Lu, K., and Pan, X.-B. Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity. Phys. D 127, 1-2 (1999), 73–104. | Zbl | MR

[20] Lu, K., and Pan, X.-B. Gauge invariant eigenvalue problems in R 2 and in R + 2 . Trans. Amer. Math. Soc. 352, 3 (2000), 1247–1276. | Zbl | MR

[21] Martin, D. http://perso.univ-rennes1.fr/daniel.martin/melina.

[22] Pan, X.-B. Upper critical field for superconductors with edges and corners. Calc. Var. Partial Differential Equations 14, 4 (2002), 447–482. | Zbl | MR

[23] Persson, A. Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator. Math. Scand. 8 (1960), 143–153. | Zbl | MR

[24] Simon, B. Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions. Ann. Inst. H. Poincaré Sect. A (N.S.) 38, 3 (1983), 295–308. | Zbl | MR | mathdoc-id

Cité par Sources :