Microlocal Normal Forms for the Magnetic Laplacian
Journées équations aux dérivées partielles (2014), article no. 12, 12 p.

Voir la notice de l'acte provenant de la source Numdam

We explore symplectic techniques to obtain long time estimates for a purely magnetic confinement in two degrees of freedom. Using pseudo-differential calculus, the same techniques lead to microlocal normal forms for the magnetic Laplacian. In the case of a strong magnetic field, we prove a reduction to a 1D semiclassical pseudo-differential operator. This can be used to derive precise asymptotic expansions for the eigenvalues at any order.

DOI : 10.5802/jedp.115

Vũ Ngọc, San 1

1 IRMAR (UMR CNRS 6625) Université de Rennes 1 Campus de Beaulieu 35042 Rennes cedex, France
@incollection{JEDP_2014____A12_0,
     author = {V\~{u} Ngọc, San},
     title = {Microlocal {Normal} {Forms} for the {Magnetic} {Laplacian}},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {12},
     pages = {1--12},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2014},
     doi = {10.5802/jedp.115},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.115/}
}
TY  - JOUR
AU  - Vũ Ngọc, San
TI  - Microlocal Normal Forms for the Magnetic Laplacian
JO  - Journées équations aux dérivées partielles
PY  - 2014
SP  - 1
EP  - 12
PB  - Groupement de recherche 2434 du CNRS
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jedp.115/
DO  - 10.5802/jedp.115
LA  - en
ID  - JEDP_2014____A12_0
ER  - 
%0 Journal Article
%A Vũ Ngọc, San
%T Microlocal Normal Forms for the Magnetic Laplacian
%J Journées équations aux dérivées partielles
%D 2014
%P 1-12
%I Groupement de recherche 2434 du CNRS
%U http://geodesic.mathdoc.fr/articles/10.5802/jedp.115/
%R 10.5802/jedp.115
%G en
%F JEDP_2014____A12_0
Vũ Ngọc, San. Microlocal Normal Forms for the Magnetic Laplacian. Journées équations aux dérivées partielles (2014), article  no. 12, 12 p. doi : 10.5802/jedp.115. http://geodesic.mathdoc.fr/articles/10.5802/jedp.115/

[1] Arnol’d, V. I. Remarks on the Morse theory of a divergence-free vector field, the averaging method, and the motion of a charged particle in a magnetic field, Tr. Mat. Inst. Steklova, Volume 216 (1997) no. Din. Sist. i Smezhnye Vopr., pp. 9-19 | Zbl | MR

[2] Boutet de Monvel, L.; Trèves, F. On a class of pseudodifferential operators with double characteristics, Invent. Math., Volume 24 (1974), pp. 1-34 | Zbl | MR

[3] Charles, L.; Vũ Ngọc, S. Spectral asymptotics via the semiclassical Birkhoff normal form, Duke Math. J., Volume 143 (2008) no. 3, pp. 463-511 | Zbl | MR

[4] Cheverry, C. Can one hear whistler waves ? (2014) (preprint hal-00956458) | HAL

[5] Fournais, S.; Helffer, B. Spectral methods in surface superconductivity, Progress in Nonlinear Differential Equations and their Applications, 77, Birkhäuser Boston Inc., Boston, MA, 2010, pp. xx+324 | Zbl | MR

[6] Helffer, B.; Kordyukov, Y. A. Semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator: the case of discrete wells, Spectral theory and geometric analysis (Contemp. Math.), Volume 535, Amer. Math. Soc., Providence, RI, 2011, pp. 55-78 | DOI | Zbl | MR

[7] Hörmander, L. A class of hypoelliptic pseudodifferential operators with double characteristics, Math. Ann., Volume 217 (1975) no. 2, pp. 165-188 | Zbl | MR

[8] Ivrii, V. Microlocal analysis and precise spectral asymptotics, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998, pp. xvi+731 | Zbl | MR

[9] Littlejohn, R. G. A guiding center Hamiltonian: a new approach, J. Math. Phys., Volume 20 (1979) no. 12, pp. 2445-2458 | DOI | Zbl | MR

[10] Raymond, N.; Vũ Ngọc, S Geometry and spectrum in 2D magnetic wells, Ann. Inst. Fourier (Grenoble) (2014) (to appear)

[11] Sjöstrand, J. Parametrices for pseudodifferential operators with multiple characteristics, Ark. Mat., Volume 12 (1974), pp. 85-130 | Zbl | MR

[12] Sjöstrand, J. Semi-excited states in nondegenerate potential wells, Asymptotic Analysis, Volume 6 (1992), pp. 29-43 | Zbl | MR

[13] Weinstein, A. Symplectic manifolds and their lagrangian submanifolds, Adv. in Math., Volume 6 (1971), pp. 329-346 | Zbl | MR

Cité par Sources :