The Hartree equation for infinite quantum systems
Journées équations aux dérivées partielles (2014), article no. 8, 18 p.

Voir la notice de l'acte provenant de la source Numdam

We review some recent results obtained with Mathieu Lewin [21] concerning the nonlinear Hartree equation for density matrices of infinite trace, describing the time evolution of quantum systems with infinitely many particles. Our main result is the asymptotic stability of a large class of translation-invariant density matrices which are stationary solutions to the Hartree equation. We also mention some related result obtained in collaboration with Rupert Frank [13] about Strichartz estimates for orthonormal systems.

DOI : 10.5802/jedp.111

Sabin, Julien 1

1 Laboratoire de Mathématiques d’Orsay UMR CNRS 8628 Université Paris-Sud 91405 Orsay, France
@incollection{JEDP_2014____A8_0,
     author = {Sabin, Julien},
     title = {The {Hartree} equation for infinite quantum systems},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {8},
     pages = {1--18},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2014},
     doi = {10.5802/jedp.111},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.111/}
}
TY  - JOUR
AU  - Sabin, Julien
TI  - The Hartree equation for infinite quantum systems
JO  - Journées équations aux dérivées partielles
PY  - 2014
SP  - 1
EP  - 18
PB  - Groupement de recherche 2434 du CNRS
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jedp.111/
DO  - 10.5802/jedp.111
LA  - en
ID  - JEDP_2014____A8_0
ER  - 
%0 Journal Article
%A Sabin, Julien
%T The Hartree equation for infinite quantum systems
%J Journées équations aux dérivées partielles
%D 2014
%P 1-18
%I Groupement de recherche 2434 du CNRS
%U http://geodesic.mathdoc.fr/articles/10.5802/jedp.111/
%R 10.5802/jedp.111
%G en
%F JEDP_2014____A8_0
Sabin, Julien. The Hartree equation for infinite quantum systems. Journées équations aux dérivées partielles (2014), article  no. 8, 18 p. doi : 10.5802/jedp.111. http://geodesic.mathdoc.fr/articles/10.5802/jedp.111/

[1] C. Bardos, L. Erdős, F. Golse, N. Mauser, and H.-T. Yau, Derivation of the Schrödinger-Poisson equation from the quantum N-body problem, C. R. Math. Acad. Sci. Paris, 334 (2002), pp. 515–520. | Zbl | MR

[2] C. Bardos, F. Golse, A. Gottlieb, and N. Mauser, Mean field dynamics of fermions and the time-dependent Hartree-Fock equation, J. Math. Pures Appl. (9), 82 (2003), pp. 665–683. | Zbl | MR

[3] N. Benedikter, M. Porta, and B. Schlein, Mean-field evolution of fermionic systems, Comm. Math. Phys., 331 (2014), pp. 1087–1131. | MR

[4] J. Bennett, N. Bez, S. Gutierrez, and S. Lee, On the Strichartz estimates for the kinetic transport equation, arXiv preprint arXiv:1307.1600, (2013). | MR

[5] A. Bove, G. Da Prato, and G. Fano, An existence proof for the Hartree-Fock time-dependent problem with bounded two-body interaction, Commun. Math. Phys., 37 (1974), pp. 183–191. | Zbl | MR

[6] By same, On the Hartree-Fock time-dependent problem, Commun. Math. Phys., 49 (1976), pp. 25–33. | MR

[7] E. Cancès and G. Stoltz, A mathematical formulation of the random phase approximation for crystals, Ann. Inst. H. Poincaré (C) Anal. Non Linéaire, 29 (2012), pp. 887–925. | Zbl | MR | mathdoc-id

[8] F. Castella and B. Perthame, Estimations de Strichartz pour les équations de transport cinétique, CR Acad. Sci. Paris Sér. I Math, 322 (1996), pp. 535–540. | Zbl | MR

[9] J. Chadam, The time-dependent Hartree-Fock equations with Coulomb two-body interaction, Commun. Math. Phys., 46 (1976), pp. 99–104. | Zbl | MR

[10] A. Elgart, L. Erdős, B. Schlein, and H.-T. Yau, Nonlinear Hartree equation as the mean field limit of weakly coupled fermions, J. Math. Pures Appl., 83 (2004), pp. 1241–1273. | Zbl | MR

[11] R. Frank, M. Lewin, E. Lieb, and R. Seiringer, A positive density analogue of the Lieb-Thirring inequality, Duke Math. J., 162 (2012), pp. 435–495. | Zbl | MR

[12] R. L. Frank, M. Lewin, E. H. Lieb, and R. Seiringer, Strichartz inequality for orthonormal functions, J. Eur. Math. Soc., (2013). In press. | MR

[13] R. L. Frank and J. Sabin, Restriction theorems for orthonormal functions, strichartz inequalities, and uniform sobolev estimates, arXiv preprint arXiv:1404.2817, (2014).

[14] J. Fröhlich and A. Knowles, A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction, J. Stat. Phys., 145 (2011), pp. 23–50. | Zbl | MR

[15] G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid, Cambridge University Press, 2005.

[16] C. Hainzl, M. Lewin, and C. Sparber, Existence of global-in-time solutions to a generalized Dirac-Fock type evolution equation, Lett. Math. Phys., 72 (2005), pp. 99–113. | Zbl | MR

[17] M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), pp. 955–980. | Zbl | MR

[18] C. E. Kenig, A. Ruiz, and C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J., 55 (1987), pp. 329–347. | Zbl | MR

[19] M. Lewin and J. Sabin, The Hartree equation for infinitely many particles. I. Well-posedness theory, Comm. Math. Phys., (2013). To appear.

[20] M. Lewin and J. Sabin, A family of monotone quantum relative entropies, Lett. Math. Phys., 104 (2014), pp. 691–705. | MR

[21] M. Lewin and J. Sabin, The Hartree equation for infinitely many particles. II. Dispersion and scattering in 2D, Analysis and PDE, 7 (2014), pp. 1339–1363. | MR

[22] C. Mouhot and C. Villani, On Landau damping, Acta Math., 207 (2011), pp. 29–201. | Zbl | MR

[23] E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc., 83 (1956), pp. 482–492. | Zbl | MR

[24] E. M. Stein, Oscillatory integrals in Fourier analysis, in Beijing lectures in harmonic analysis (Beijing, 1984), vol. 112 of Ann. of Math. Stud., Princeton Univ. Press, Princeton, NJ, 1986, pp. 307–355. | Zbl | MR

[25] R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), pp. 705–714. | Zbl | MR

[26] K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys., 110 (1987), pp. 415–426. | Zbl | MR

[27] S. Zagatti, The Cauchy problem for Hartree-Fock time-dependent equations, Ann. Inst. H. Poincaré Phys. Théor., 56 (1992), pp. 357–374. | mathdoc-id | Zbl | MR | EuDML

Cité par Sources :