Tunnel effect for semiclassical random walk
Journées équations aux dérivées partielles (2014), article no. 6, 18 p.

Voir la notice de l'acte provenant de la source Numdam

In this note we describe recent results on semiclassical random walk associated to a probability density which may also concentrate as the semiclassical parameter goes to zero. The main result gives a spectral asymptotics of the close to 1 eigenvalues. This problem was studied in [1] and relies on a general factorization result for pseudo-differential operators. In this note we just sketch the proof of this second theorem. At the end of the note, using the factorization, we give a new proof of the spectral asymptotics based on some comparison argument.

DOI : 10.5802/jedp.109

Bony, Jean-François 1 ; Hérau, Frédéric 2 ; Michel, Laurent 3

1 Institut Mathématiques de Bordeaux Université de Bordeaux, UMR CNRS 5251 351, cours de la Libération 33405 Talence Cedex, France
2 Laboratoire de Mathématiques Jean Leray Université de Nantes, UMR CNRS 6629 2, rue de la Houssinière 44322 Nantes Cedex 03, France
3 Laboratoire Jean-Alexandre Dieudonné Université de Nice - Sophia Antipolis UMR CNRS 7351 06108 Nice Cedex 02, France
@incollection{JEDP_2014____A6_0,
     author = {Bony, Jean-Fran\c{c}ois and H\'erau, Fr\'ed\'eric and Michel, Laurent},
     title = {Tunnel effect for semiclassical random walk},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {6},
     pages = {1--18},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2014},
     doi = {10.5802/jedp.109},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.109/}
}
TY  - JOUR
AU  - Bony, Jean-François
AU  - Hérau, Frédéric
AU  - Michel, Laurent
TI  - Tunnel effect for semiclassical random walk
JO  - Journées équations aux dérivées partielles
PY  - 2014
SP  - 1
EP  - 18
PB  - Groupement de recherche 2434 du CNRS
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jedp.109/
DO  - 10.5802/jedp.109
LA  - en
ID  - JEDP_2014____A6_0
ER  - 
%0 Journal Article
%A Bony, Jean-François
%A Hérau, Frédéric
%A Michel, Laurent
%T Tunnel effect for semiclassical random walk
%J Journées équations aux dérivées partielles
%D 2014
%P 1-18
%I Groupement de recherche 2434 du CNRS
%U http://geodesic.mathdoc.fr/articles/10.5802/jedp.109/
%R 10.5802/jedp.109
%G en
%F JEDP_2014____A6_0
Bony, Jean-François; Hérau, Frédéric; Michel, Laurent. Tunnel effect for semiclassical random walk. Journées équations aux dérivées partielles (2014), article  no. 6, 18 p. doi : 10.5802/jedp.109. http://geodesic.mathdoc.fr/articles/10.5802/jedp.109/

[1] Bony, J.-F.; Hérau, F.; Michel, L. Tunnel effect for semiclassical random walks (arXiv:1401.2935) | MR

[2] Bovier, A.; Gayrard, V.; Klein, M. Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues, J. Eur. Math. Soc., Volume 7 (2005) no. 1, pp. 69-99 | Zbl | MR | EuDML

[3] Cycon, H.; Froese, R.; Kirsch, W.; Simon, B. Schrödinger operators with application to quantum mechanics and global geometry, Texts and Monographs in Physics, Springer-Verlag, 1987, pp. x+319 | Zbl | MR

[4] Dimassi, M.; Sjöstrand, J. Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, 1999, pp. xii+227 | Zbl | MR

[5] Helffer, B. Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, 1336, Springer-Verlag, 1988, pp. vi+107 | Zbl | MR

[6] Helffer, B.; Klein, M.; Nier, F. Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach, Mat. Contemp., Volume 26 (2004), pp. 41-85 | Zbl | MR

[7] Helffer, B.; Nier, F. Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Lecture Notes in Mathematics, 1862, Springer-Verlag, 2005, pp. x+209 | Zbl | MR

[8] Helffer, B.; Sjöstrand, J. Puits multiples en mécanique semi-classique. IV. Étude du complexe de Witten, Comm. Partial Differential Equations, Volume 10 (1985) no. 3, pp. 245-340 | Zbl | MR

[9] Hérau, F.; Hitrik, M.; Sjöstrand, J. Tunnel effect and symmetries for Kramers-Fokker-Planck type operators, J. Inst. Math. Jussieu, Volume 10 (2011) no. 3, pp. 567-634 | Zbl | MR

[10] Hérau, F.; Hitrik, M.; Sjöstrand, J. Supersymmetric structures for second order differential operators, Algebra i Analiz, Volume 25 (2013) no. 2, pp. 125-154 | MR

[11] Lelièvre, T.; Rousset, M.; Stoltz, G. Free energy computations, Imperial College Press, 2010, pp. xiv+458 (A mathematical perspective) | Zbl | MR

[12] Martinez, A. An introduction to semiclassical and microlocal analysis, Universitext, Springer-Verlag, 2002, pp. viii+190 | Zbl | MR

[13] Martinez, A.; Rouleux, M. Effet tunnel entre puits dégénérés, Comm. Partial Differential Equations, Volume 13 (1988) no. 9, pp. 1157-1187 | Zbl | MR

[14] Reed, M.; Simon, B. Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, 1978, pp. xv+396 | Zbl | MR

[15] Zworski, M. Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012, pp. xii+431 | Zbl | MR

Cité par Sources :