Uniform Lipschitz estimates in stochastic homogenization
Journées équations aux dérivées partielles (2014), article no. 1, 11 p.

Voir la notice de l'acte provenant de la source Numdam

We review some recent results in quantitative stochastic homogenization for divergence-form, quasilinear elliptic equations. In particular, we are interested in obtaining L -type bounds on the gradient of solutions and thus giving a demonstration of the principle that solutions of equations with random coefficients have much better regularity (with overwhelming probability) than a general equation with non-constant coefficients.

DOI : 10.5802/jedp.104
Classification : 35B27, 60H25, 35J20, 35J62
Keywords: Stochastic homogenization, Lipschitz regularity, error estimate

Armstrong, Scott 1

1 Ceremade (UMR CNRS 7534) Université Paris-Dauphine Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16, France
@incollection{JEDP_2014____A1_0,
     author = {Armstrong, Scott},
     title = {Uniform {Lipschitz} estimates in stochastic homogenization},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {1},
     pages = {1--11},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2014},
     doi = {10.5802/jedp.104},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jedp.104/}
}
TY  - JOUR
AU  - Armstrong, Scott
TI  - Uniform Lipschitz estimates in stochastic homogenization
JO  - Journées équations aux dérivées partielles
PY  - 2014
SP  - 1
EP  - 11
PB  - Groupement de recherche 2434 du CNRS
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jedp.104/
DO  - 10.5802/jedp.104
LA  - en
ID  - JEDP_2014____A1_0
ER  - 
%0 Journal Article
%A Armstrong, Scott
%T Uniform Lipschitz estimates in stochastic homogenization
%J Journées équations aux dérivées partielles
%D 2014
%P 1-11
%I Groupement de recherche 2434 du CNRS
%U http://geodesic.mathdoc.fr/articles/10.5802/jedp.104/
%R 10.5802/jedp.104
%G en
%F JEDP_2014____A1_0
Armstrong, Scott. Uniform Lipschitz estimates in stochastic homogenization. Journées équations aux dérivées partielles (2014), article  no. 1, 11 p. doi : 10.5802/jedp.104. http://geodesic.mathdoc.fr/articles/10.5802/jedp.104/

[1] Armstrong, S. N.; Mourrat, J.-C. Lipschitz regularity for elliptic equations with random coefficients (Preprint)

[2] Armstrong, S. N.; Shen, Z. Lipschitz estimates in almost-periodic homogenization (Preprint, arXiv:1409.2094)

[3] Armstrong, S. N.; Smart, C. K. Quantitative stochastic homogenization of convex integral functionals (Preprint, arXiv:1406.0996)

[4] Avellaneda, M.; Lin, F.-H. Compactness methods in the theory of homogenization, Comm. Pure Appl. Math., Volume 40 (1987) no. 6, pp. 803-847 | DOI | Zbl | MR

[5] Avellaneda, M.; Lin, F.-H. L p bounds on singular integrals in homogenization, Comm. Pure Appl. Math., Volume 44 (1991) no. 8-9, pp. 897-910 | DOI | Zbl | MR

[6] Dal Maso, G.; Modica, L. Nonlinear stochastic homogenization, Ann. Mat. Pura Appl. (4), Volume 144 (1986), pp. 347-389 | DOI | Zbl | MR

[7] Dal Maso, G.; Modica, L. Nonlinear stochastic homogenization and ergodic theory, J. Reine Angew. Math., Volume 368 (1986), pp. 28-42 | Zbl | MR

[8] Gloria, A.; Neukamm, S.; Otto, F. A regularity theory for random elliptic operators, Preprint, arXiv:1409.2678

[9] Gloria, A.; Otto, F. An optimal variance estimate in stochastic homogenization of discrete elliptic equations, Ann. Probab., Volume 39 (2011) no. 3, pp. 779-856 | DOI | Zbl | MR

[10] Gloria, A.; Otto, F. An optimal error estimate in stochastic homogenization of discrete elliptic equations, Ann. Appl. Probab., Volume 22 (2012) no. 1, pp. 1-28 | DOI | MR

[11] Gloria, A.; Otto, F. Quantitative results on the corrector equation in stochastic homogenization, Preprint

[12] Kozlov, S. M. The averaging of random operators, Mat. Sb. (N.S.), Volume 109(151) (1979) no. 2, p. 188-202, 327 | Zbl | MR

[13] Naddaf, A; Spencer, T. Estimates on the variance of some homogenization problems, 1998, Unpublished preprint

[14] Papanicolaou, G. C.; Varadhan, S. R. S. Boundary value problems with rapidly oscillating random coefficients, Random fields, Vol. I, II (Esztergom, 1979) (Colloq. Math. Soc. János Bolyai), Volume 27, North-Holland, Amsterdam, 1981, pp. 835-873 | Zbl | MR

[15] Yurinskiĭ, V. V. Averaging of symmetric diffusion in a random medium, Sibirsk. Mat. Zh., Volume 27 (1986) no. 4, p. 167-180, 215 | Zbl | MR

[16] Yurinskiĭ, V. V. Homogenization error estimates for random elliptic operators, Mathematics of random media (Blacksburg, VA, 1989) (Lectures in Appl. Math.), Volume 27, Amer. Math. Soc., Providence, RI, 1991, pp. 285-291 | Zbl | MR

Cité par Sources :