Théorie des nombres, Algèbre homologique
A note on Gersten’s conjecture for étale cohomology over two-dimensional henselian regular local rings
[Une note sur la conjecture de Gersten pour la cohomologie étale sur des anneaux locaux réguliers henséliens à deux dimensions]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 1, pp. 33-39.

Voir la notice de l'article provenant de la source Numdam

We prove Gersten’s conjecture for étale cohomology over two dimensional henselian regular local rings without assuming equi-characteristic. As an application, we obtain the local-global principle for Galois cohomology over mixed characteristic two-dimensional henselian local rings.

Nous montrons la conjecture de Gersten pour la cohomologie étale sur des anneaux locaux réguliers henséliens sans supposer de caractère équicaractéristique. En application, nous obtenons le principe local-global pour la cohomologie de Galois sur des anneaux locaux henséliens à deux dimensions de caractéristique mixte.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.9

Sakagaito, Makoto 1

1 Indian Institute of Science Education and Research, Mohali
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_1_33_0,
     author = {Sakagaito, Makoto},
     title = {A note on {Gersten{\textquoteright}s} conjecture for \'etale cohomology over two-dimensional henselian regular local rings},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {33--39},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {1},
     year = {2020},
     doi = {10.5802/crmath.9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.9/}
}
TY  - JOUR
AU  - Sakagaito, Makoto
TI  - A note on Gersten’s conjecture for étale cohomology over two-dimensional henselian regular local rings
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 33
EP  - 39
VL  - 358
IS  - 1
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.9/
DO  - 10.5802/crmath.9
LA  - en
ID  - CRMATH_2020__358_1_33_0
ER  - 
%0 Journal Article
%A Sakagaito, Makoto
%T A note on Gersten’s conjecture for étale cohomology over two-dimensional henselian regular local rings
%J Comptes Rendus. Mathématique
%D 2020
%P 33-39
%V 358
%N 1
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.9/
%R 10.5802/crmath.9
%G en
%F CRMATH_2020__358_1_33_0
Sakagaito, Makoto. A note on Gersten’s conjecture for étale cohomology over two-dimensional henselian regular local rings. Comptes Rendus. Mathématique, Tome 358 (2020) no. 1, pp. 33-39. doi : 10.5802/crmath.9. http://geodesic.mathdoc.fr/articles/10.5802/crmath.9/

[1] Artin, Michael Grothendieck Topologies, Harvard University, 1962 | Zbl

[2] Bloch, Spencer; Ogus, Arthur Gersten’s conjecture and the homology of schemes, Ann. Sci. Éc. Norm. Supér., Volume 7 (1974), pp. 181-201 | DOI | MR | Zbl

[3] Colliot-Thélène, Jean-Louis Quelques problèmes locaux-globaux (2011) (personal notes)

[4] Colliot-Thélène, Jean-Louis; Hoobler, Raymond T.; Kahn, Bruno The Bloch–Ogus–Gabber theorem, Algebraic K-theory (Fields Institute Communications), Volume 16, American Mathematical Society, 1997, pp. 31-94 | MR | Zbl

[5] Fujiwara, Kazuhiro A proof of the absolute purity conjecture (after Gabber), Algebraic geometry 2000, Azumino (Hotaka) (Advanced Studies in Pure Mathematics), Volume 36, Mathematical Society of Japan, 2000, pp. 153-183 | MR | Zbl

[6] Geisser, Thomas Motivic cohomology over Dedekind rings, Math. Z., Volume 248 (2004) no. 4, pp. 773-794 | DOI | Zbl

[7] Harbater, David; Hartmann, Julia; Krashen, Daniel Local-global principles for Galois cohomology, Comment. Math. Helv., Volume 89 (2014) no. 1, pp. 215-253 | DOI | MR | Zbl

[8] Hu, Yong A Cohomological Hasse Principle Over Two-dimensional Local Rings, Int. Math. Res. Not., Volume 2017 (2017) no. 14, pp. 4369-4397 | MR | Zbl

[9] Milne, James S. Étale Cohomology, Princeton Mathematical Series, 33, Princeton University Press, 1980 | MR | Zbl

[10] Panin, Ivan A. The equicharacteristic case of the Gersten conjecture, Tr. Mat. Inst. Im. V. A. Steklova, Volume 241 (2003) no. 2, pp. 169-178 | MR | Zbl

[11] Saito, Shuji Arithmetic on two-dimensional local rings, Invent. Math., Volume 85 (1986), pp. 379-414 | DOI | MR | Zbl

[12] Sakagaito, Makoto On problems about a generalization of the Brauer group (2016) (https://arxiv.org/abs/1511.09232v2)

[13] Sakagaito, Makoto On a generalized Brauer group in mixed characteristic cases (2019) (https://arxiv.org/abs/1710.11449v2)

[14] Voevodsky, Vladimir On motivic cohomology with Z/l-coefficients, Ann. Math., Volume 174 (2011) no. 1, pp. 401-438 | MR | Zbl

Cité par Sources :