Voir la notice de l'article provenant de la source Numdam
Given a probability measure on an Alexandrov space with curvature bounded below, we prove that the support of the pushforward of on the tangent cone at its (exponential) barycenter is a subset of a Hilbert space, without separability of the tangent cone.
Étant donné une mesure de probabilité sur un espace d’Alexandrov avec courbure minorée, nous prouvons que le support de la mesure poussée de sur le cône tangent à son barycentre (exponentiel) est un sous-ensemble d’un espace de Hilbert, sans condition de séparabilité du cône tangent.
Le Gouic, Thibaut 1
@article{CRMATH_2020__358_4_489_0, author = {Le Gouic, Thibaut}, title = {A note on flatness of non separable tangent cone at a barycenter}, journal = {Comptes Rendus. Math\'ematique}, pages = {489--495}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {4}, year = {2020}, doi = {10.5802/crmath.66}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.66/} }
TY - JOUR AU - Le Gouic, Thibaut TI - A note on flatness of non separable tangent cone at a barycenter JO - Comptes Rendus. Mathématique PY - 2020 SP - 489 EP - 495 VL - 358 IS - 4 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.66/ DO - 10.5802/crmath.66 LA - en ID - CRMATH_2020__358_4_489_0 ER -
%0 Journal Article %A Le Gouic, Thibaut %T A note on flatness of non separable tangent cone at a barycenter %J Comptes Rendus. Mathématique %D 2020 %P 489-495 %V 358 %N 4 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.66/ %R 10.5802/crmath.66 %G en %F CRMATH_2020__358_4_489_0
Le Gouic, Thibaut. A note on flatness of non separable tangent cone at a barycenter. Comptes Rendus. Mathématique, Tome 358 (2020) no. 4, pp. 489-495. doi : 10.5802/crmath.66. http://geodesic.mathdoc.fr/articles/10.5802/crmath.66/
[1] On the rate of convergence of empirical barycentres in metric spaces: curvature, convexity and extendible geodesics (2018) (https://arxiv.org/abs/1806.02740v1)
[2] Alexandrov geometry (2019) (http://arxiv.org/abs/1903.08539) | Zbl
[3] A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, 2001 | MR | Zbl
[4] On tangent cones of Alexandrov spaces with curvature bounded below, Manuscr. Math., Volume 103 (2000) no. 2, pp. 169-182 | MR | Zbl | DOI
[5] Kirszbraun’s theorem and metric spaces of bounded curvature, Geom. Funct. Anal., Volume 7 (1997) no. 3, pp. 535-560 (Accessed 2019-05-15) | MR | Zbl | DOI
[6] Fast convergence of empirical barycenters in Alexandrov spaces and the Wasserstein space (2019) (https://arxiv.org/abs/1908.00828)
[7] Barycenters in Alexandrov spaces of curvature bounded below, Adv. Geom., Volume 12 (2012) no. 4, pp. 571-587 | MR | Zbl
[8] Metric spaces of lower bounded curvature, Expo. Math., Volume 17 (1999) no. 1, pp. 35-47 | MR | Zbl
[9] A rigidity theorem in Alexandrov spaces with lower curvature bound, Math. Ann., Volume 353 (2012) no. 2, pp. 305-331 | MR | DOI | Zbl
Cité par Sources :