Voir la notice de l'article provenant de la source Numdam
We construct automorphisms of positive entropy of K3 surfaces of Picard number with certain Salem numbers. We also prove that there is a fixed point free automorphism of positive entropy on a K3 surface of Picard number with Salem degree .
Lee, Kwangwoo 1
@article{CRMATH_2023__361_G11_1805_0, author = {Lee, Kwangwoo}, title = {Salem numbers of automorphisms of {K3} surfaces with {Picard} number $4$}, journal = {Comptes Rendus. Math\'ematique}, pages = {1805--1812}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G11}, year = {2023}, doi = {10.5802/crmath.533}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.533/} }
TY - JOUR AU - Lee, Kwangwoo TI - Salem numbers of automorphisms of K3 surfaces with Picard number $4$ JO - Comptes Rendus. Mathématique PY - 2023 SP - 1805 EP - 1812 VL - 361 IS - G11 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.533/ DO - 10.5802/crmath.533 LA - en ID - CRMATH_2023__361_G11_1805_0 ER -
%0 Journal Article %A Lee, Kwangwoo %T Salem numbers of automorphisms of K3 surfaces with Picard number $4$ %J Comptes Rendus. Mathématique %D 2023 %P 1805-1812 %V 361 %N G11 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.533/ %R 10.5802/crmath.533 %G en %F CRMATH_2023__361_G11_1805_0
Lee, Kwangwoo. Salem numbers of automorphisms of K3 surfaces with Picard number $4$. Comptes Rendus. Mathématique, Tome 361 (2023) no. G11, pp. 1805-1812. doi: 10.5802/crmath.533
Cité par Sources :