Algèbre, Géométrie et Topologie
On Bousfield’s conjectures for the unstable Adams spectral sequence for SO and U
Comptes Rendus. Mathématique, Tome 361 (2023) no. G11, pp. 1789-1804

Voir la notice de l'article provenant de la source Numdam

The unstable Adams spectral sequence is a spectral sequence that starts from algebraic information about the mod 2 cohomology H * X of a space X as an unstable algebra over the Steenrod algebra 𝒜, and converges, in good cases, to the 2-localized homotopy groups of X. Bousfield and Don Davis looked at the case when X was either of the infinite matrix groups SO or U. Bousfield and Davis created algebraic spectral sequences and conjectured that they agreed with the unstable Adams spectral sequences for SO and U. To this end the following algebraic decomposition must hold

Ext 𝒰 s H ˜ * P ,Σ t /2 n Ext 𝒰 s M n /M n-1 ,Σ t /2

where M 1 M 2 is the well known dyadic filtration of the 𝒜-module H ˜ * P ,/2𝔽 2 u given by the dyadic expansion of the powers of u. This paper aims at showing that this decomposition holds for numerous values of s and t.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.531
Classification : 55T15, 55Q52
Keywords: Injective resolution, Projective resolution, Unstable Adams spectral sequence, Unstable modules

Nguyễn, Thế Cường 1

1 Department of Mathematics, Informatics and Mechanics, VNU University of Science, Vietnam National University, Hanoi
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G11_1789_0,
     author = {Nguyễn, Thế Cường},
     title = {On {Bousfield{\textquoteright}s} conjectures for the unstable {Adams} spectral sequence for $SO$ and $U$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1789--1804},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G11},
     year = {2023},
     doi = {10.5802/crmath.531},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.531/}
}
TY  - JOUR
AU  - Nguyễn, Thế Cường
TI  - On Bousfield’s conjectures for the unstable Adams spectral sequence for $SO$ and $U$
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1789
EP  - 1804
VL  - 361
IS  - G11
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.531/
DO  - 10.5802/crmath.531
LA  - en
ID  - CRMATH_2023__361_G11_1789_0
ER  - 
%0 Journal Article
%A Nguyễn, Thế Cường
%T On Bousfield’s conjectures for the unstable Adams spectral sequence for $SO$ and $U$
%J Comptes Rendus. Mathématique
%D 2023
%P 1789-1804
%V 361
%N G11
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.531/
%R 10.5802/crmath.531
%G en
%F CRMATH_2023__361_G11_1789_0
Nguyễn, Thế Cường. On Bousfield’s conjectures for the unstable Adams spectral sequence for $SO$ and $U$. Comptes Rendus. Mathématique, Tome 361 (2023) no. G11, pp. 1789-1804. doi: 10.5802/crmath.531

Cité par Sources :