Voir la notice de l'article provenant de la source Numdam
The unstable Adams spectral sequence is a spectral sequence that starts from algebraic information about the mod cohomology of a space as an unstable algebra over the Steenrod algebra , and converges, in good cases, to the -localized homotopy groups of . Bousfield and Don Davis looked at the case when was either of the infinite matrix groups or . Bousfield and Davis created algebraic spectral sequences and conjectured that they agreed with the unstable Adams spectral sequences for and . To this end the following algebraic decomposition must hold
where is the well known dyadic filtration of the -module given by the dyadic expansion of the powers of . This paper aims at showing that this decomposition holds for numerous values of and .
Nguyễn, Thế Cường 1
@article{CRMATH_2023__361_G11_1789_0, author = {Nguyễn, Thế Cường}, title = {On {Bousfield{\textquoteright}s} conjectures for the unstable {Adams} spectral sequence for $SO$ and $U$}, journal = {Comptes Rendus. Math\'ematique}, pages = {1789--1804}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G11}, year = {2023}, doi = {10.5802/crmath.531}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.531/} }
TY - JOUR AU - Nguyễn, Thế Cường TI - On Bousfield’s conjectures for the unstable Adams spectral sequence for $SO$ and $U$ JO - Comptes Rendus. Mathématique PY - 2023 SP - 1789 EP - 1804 VL - 361 IS - G11 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.531/ DO - 10.5802/crmath.531 LA - en ID - CRMATH_2023__361_G11_1789_0 ER -
%0 Journal Article %A Nguyễn, Thế Cường %T On Bousfield’s conjectures for the unstable Adams spectral sequence for $SO$ and $U$ %J Comptes Rendus. Mathématique %D 2023 %P 1789-1804 %V 361 %N G11 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.531/ %R 10.5802/crmath.531 %G en %F CRMATH_2023__361_G11_1789_0
Nguyễn, Thế Cường. On Bousfield’s conjectures for the unstable Adams spectral sequence for $SO$ and $U$. Comptes Rendus. Mathématique, Tome 361 (2023) no. G11, pp. 1789-1804. doi: 10.5802/crmath.531
Cité par Sources :