Voir la notice de l'article provenant de la source Numdam
We prove the existence of a genus-zero complete maximal map with a prescribed singularity set and an arbitrary number of simple and complete ends. We also discuss the conditions under which this maximal map can be made into a complete maxface.
Kumar, Pradip 1 ; Mohanty, Sai Rasmi Ranjan 1
@article{CRMATH_2023__361_G10_1683_0, author = {Kumar, Pradip and Mohanty, Sai Rasmi Ranjan}, title = {Genus {Zero} {Complete} {Maximal} {Maps} and {Maxfaces} with an {Arbitrary} {Number} of {Ends}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1683--1690}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G10}, year = {2023}, doi = {10.5802/crmath.525}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.525/} }
TY - JOUR AU - Kumar, Pradip AU - Mohanty, Sai Rasmi Ranjan TI - Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends JO - Comptes Rendus. Mathématique PY - 2023 SP - 1683 EP - 1690 VL - 361 IS - G10 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.525/ DO - 10.5802/crmath.525 LA - en ID - CRMATH_2023__361_G10_1683_0 ER -
%0 Journal Article %A Kumar, Pradip %A Mohanty, Sai Rasmi Ranjan %T Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends %J Comptes Rendus. Mathématique %D 2023 %P 1683-1690 %V 361 %N G10 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.525/ %R 10.5802/crmath.525 %G en %F CRMATH_2023__361_G10_1683_0
Kumar, Pradip; Mohanty, Sai Rasmi Ranjan. Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends. Comptes Rendus. Mathématique, Tome 361 (2023) no. G10, pp. 1683-1690. doi: 10.5802/crmath.525
Cité par Sources :