Voir la notice de l'article provenant de la source Numdam
Let with mean value zero, and be polynomials in variables with real coefficients and . We prove that
where may depend on , and , but not otherwise on the coefficients of and .
The above result answers an open question posed in [13]. Additional boundedness results of similar nature are also obtained.
Al-Qassem, Hussain 1 ; Cheng, Leslie 2 ; Pan, Yibiao 3
@article{CRMATH_2023__361_G10_1673_0, author = {Al-Qassem, Hussain and Cheng, Leslie and Pan, Yibiao}, title = {On the boundedness of a family of oscillatory singular integrals}, journal = {Comptes Rendus. Math\'ematique}, pages = {1673--1681}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G10}, year = {2023}, doi = {10.5802/crmath.523}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.523/} }
TY - JOUR AU - Al-Qassem, Hussain AU - Cheng, Leslie AU - Pan, Yibiao TI - On the boundedness of a family of oscillatory singular integrals JO - Comptes Rendus. Mathématique PY - 2023 SP - 1673 EP - 1681 VL - 361 IS - G10 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.523/ DO - 10.5802/crmath.523 LA - en ID - CRMATH_2023__361_G10_1673_0 ER -
%0 Journal Article %A Al-Qassem, Hussain %A Cheng, Leslie %A Pan, Yibiao %T On the boundedness of a family of oscillatory singular integrals %J Comptes Rendus. Mathématique %D 2023 %P 1673-1681 %V 361 %N G10 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.523/ %R 10.5802/crmath.523 %G en %F CRMATH_2023__361_G10_1673_0
Al-Qassem, Hussain; Cheng, Leslie; Pan, Yibiao. On the boundedness of a family of oscillatory singular integrals. Comptes Rendus. Mathématique, Tome 361 (2023) no. G10, pp. 1673-1681. doi: 10.5802/crmath.523
Cité par Sources :