Voir la notice de l'article provenant de la source Numdam
Our aim in this paper is to show that the modulus of smoothness and the -functionals constructed from the Sobolev-type space corresponding to the Dunkl operator are equivalent on the interval .
Saadi, Faouaz 1 ; Daher, Radouan 1
@article{CRMATH_2023__361_G10_1625_0, author = {Saadi, Faouaz and Daher, Radouan}, title = {Equivalence of {K-functionals} and modulus of smoothness generated by a {Dunkl} type operator on the interval $(-1, 1)$}, journal = {Comptes Rendus. Math\'ematique}, pages = {1625--1633}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G10}, year = {2023}, doi = {10.5802/crmath.517}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.517/} }
TY - JOUR AU - Saadi, Faouaz AU - Daher, Radouan TI - Equivalence of K-functionals and modulus of smoothness generated by a Dunkl type operator on the interval $(-1, 1)$ JO - Comptes Rendus. Mathématique PY - 2023 SP - 1625 EP - 1633 VL - 361 IS - G10 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.517/ DO - 10.5802/crmath.517 LA - en ID - CRMATH_2023__361_G10_1625_0 ER -
%0 Journal Article %A Saadi, Faouaz %A Daher, Radouan %T Equivalence of K-functionals and modulus of smoothness generated by a Dunkl type operator on the interval $(-1, 1)$ %J Comptes Rendus. Mathématique %D 2023 %P 1625-1633 %V 361 %N G10 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.517/ %R 10.5802/crmath.517 %G en %F CRMATH_2023__361_G10_1625_0
Saadi, Faouaz; Daher, Radouan. Equivalence of K-functionals and modulus of smoothness generated by a Dunkl type operator on the interval $(-1, 1)$. Comptes Rendus. Mathématique, Tome 361 (2023) no. G10, pp. 1625-1633. doi: 10.5802/crmath.517
Cité par Sources :