Voir la notice de l'article provenant de la source Numdam
The last decade has seen an abundance of congruences for , the number of -regular partitions of . Notably absent are congruences modulo for . In this paper, we introduce Ramanujan type congruences modulo for involving some primes congruent to modulo .
Ballantine, Cristina 1 ; Merca, Mircea 2, 3
@article{CRMATH_2023__361_G9_1577_0, author = {Ballantine, Cristina and Merca, Mircea}, title = {Congruences modulo $4$ for the number of $3$-regular partitions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1577--1583}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G9}, year = {2023}, doi = {10.5802/crmath.512}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.512/} }
TY - JOUR AU - Ballantine, Cristina AU - Merca, Mircea TI - Congruences modulo $4$ for the number of $3$-regular partitions JO - Comptes Rendus. Mathématique PY - 2023 SP - 1577 EP - 1583 VL - 361 IS - G9 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.512/ DO - 10.5802/crmath.512 LA - en ID - CRMATH_2023__361_G9_1577_0 ER -
%0 Journal Article %A Ballantine, Cristina %A Merca, Mircea %T Congruences modulo $4$ for the number of $3$-regular partitions %J Comptes Rendus. Mathématique %D 2023 %P 1577-1583 %V 361 %N G9 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.512/ %R 10.5802/crmath.512 %G en %F CRMATH_2023__361_G9_1577_0
Ballantine, Cristina; Merca, Mircea. Congruences modulo $4$ for the number of $3$-regular partitions. Comptes Rendus. Mathématique, Tome 361 (2023) no. G9, pp. 1577-1583. doi: 10.5802/crmath.512
Cité par Sources :