Combinatoire, Théorie des nombres
Congruences modulo 4 for the number of 3-regular partitions
Comptes Rendus. Mathématique, Tome 361 (2023) no. G9, pp. 1577-1583

Voir la notice de l'article provenant de la source Numdam

The last decade has seen an abundance of congruences for b (n), the number of -regular partitions of n. Notably absent are congruences modulo 4 for b 3 (n). In this paper, we introduce Ramanujan type congruences modulo 4 for b 3 (2n) involving some primes p congruent to 11,13,17,19,23 modulo 24.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.512
Classification : 11P83, 05A17, 11F33
Keywords: partitions, regular partitions, congruences

Ballantine, Cristina 1 ; Merca, Mircea 2, 3

1 Department of Mathematics and Computer Science, College of The Holy Cross, Worcester, MA 01610, USA
2 Department of Mathematical Methods and Models, Fundamental Sciences Applied in Engineering Research Center, University Politehnica of Bucharest, RO-060042 Bucharest, Romania
3 Academy of Romanian Scientists, RO-050044, Bucharest, Romania
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G9_1577_0,
     author = {Ballantine, Cristina and Merca, Mircea},
     title = {Congruences modulo $4$ for the number of $3$-regular partitions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1577--1583},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G9},
     year = {2023},
     doi = {10.5802/crmath.512},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.512/}
}
TY  - JOUR
AU  - Ballantine, Cristina
AU  - Merca, Mircea
TI  - Congruences modulo $4$ for the number of $3$-regular partitions
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1577
EP  - 1583
VL  - 361
IS  - G9
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.512/
DO  - 10.5802/crmath.512
LA  - en
ID  - CRMATH_2023__361_G9_1577_0
ER  - 
%0 Journal Article
%A Ballantine, Cristina
%A Merca, Mircea
%T Congruences modulo $4$ for the number of $3$-regular partitions
%J Comptes Rendus. Mathématique
%D 2023
%P 1577-1583
%V 361
%N G9
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.512/
%R 10.5802/crmath.512
%G en
%F CRMATH_2023__361_G9_1577_0
Ballantine, Cristina; Merca, Mircea. Congruences modulo $4$ for the number of $3$-regular partitions. Comptes Rendus. Mathématique, Tome 361 (2023) no. G9, pp. 1577-1583. doi: 10.5802/crmath.512

Cité par Sources :