Voir la notice de l'article provenant de la source Numdam
Let be a symmetric function space and be the noncommutative symmetric space corresponding to associated with a von Neumann algebra with a faithful normal semifinite trace. Our main result identifies the class of spaces for which every derivation is necessarily inner for each -subalgebra in the class of all semifinite von Neumann algebras as those with the Levi property.
Huang, Jinghao 1 ; Sukochev, Fedor 2
@article{CRMATH_2023__361_G8_1357_0, author = {Huang, Jinghao and Sukochev, Fedor}, title = {Derivations with values in noncommutative symmetric spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {1357--1365}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G8}, year = {2023}, doi = {10.5802/crmath.508}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.508/} }
TY - JOUR AU - Huang, Jinghao AU - Sukochev, Fedor TI - Derivations with values in noncommutative symmetric spaces JO - Comptes Rendus. Mathématique PY - 2023 SP - 1357 EP - 1365 VL - 361 IS - G8 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.508/ DO - 10.5802/crmath.508 LA - en ID - CRMATH_2023__361_G8_1357_0 ER -
%0 Journal Article %A Huang, Jinghao %A Sukochev, Fedor %T Derivations with values in noncommutative symmetric spaces %J Comptes Rendus. Mathématique %D 2023 %P 1357-1365 %V 361 %N G8 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.508/ %R 10.5802/crmath.508 %G en %F CRMATH_2023__361_G8_1357_0
Huang, Jinghao; Sukochev, Fedor. Derivations with values in noncommutative symmetric spaces. Comptes Rendus. Mathématique, Tome 361 (2023) no. G8, pp. 1357-1365. doi: 10.5802/crmath.508
Cité par Sources :