Voir la notice de l'article provenant de la source Numdam
We show that the Levi-Civita tensors are semistable in the sense of Geometric Invariant Theory, which is equivalent to an analogue of the Alon–Tarsi conjecture on Latin squares. The proof uses the connection of Tao’s slice rank with semistable tensors. We also show an application to an asymptotic saturation-type version of Rota’s basis conjecture.
Yeliussizov, Damir 1, 2
@article{CRMATH_2023__361_G8_1367_0, author = {Yeliussizov, Damir}, title = {Stability of the {Levi-Civita} tensors and an {Alon{\textendash}Tarsi} type theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {1367--1373}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G8}, year = {2023}, doi = {10.5802/crmath.505}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.505/} }
TY - JOUR AU - Yeliussizov, Damir TI - Stability of the Levi-Civita tensors and an Alon–Tarsi type theorem JO - Comptes Rendus. Mathématique PY - 2023 SP - 1367 EP - 1373 VL - 361 IS - G8 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.505/ DO - 10.5802/crmath.505 LA - en ID - CRMATH_2023__361_G8_1367_0 ER -
%0 Journal Article %A Yeliussizov, Damir %T Stability of the Levi-Civita tensors and an Alon–Tarsi type theorem %J Comptes Rendus. Mathématique %D 2023 %P 1367-1373 %V 361 %N G8 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.505/ %R 10.5802/crmath.505 %G en %F CRMATH_2023__361_G8_1367_0
Yeliussizov, Damir. Stability of the Levi-Civita tensors and an Alon–Tarsi type theorem. Comptes Rendus. Mathématique, Tome 361 (2023) no. G8, pp. 1367-1373. doi: 10.5802/crmath.505
Cité par Sources :