Voir la notice de l'article provenant de la source Numdam
We establish the full range of the Caffarelli–Kohn–Nirenberg inequalities for radial functions in the Sobolev and the fractional Sobolev spaces of order . In particular, we show that the range of the parameters for radial functions is strictly larger than the one without symmetric assumption. Previous known results reveal only some special ranges of parameters even in the case . The known proofs used the Riesz potential and inequalities for fractional integrations. Our proof is new, elementary, and is based on one-dimensional case. Applications on compact embeddings are also mentioned.
Mallick, Arka 1 ; Nguyen, Hoai-Minh 2
@article{CRMATH_2023__361_G7_1175_0, author = {Mallick, Arka and Nguyen, Hoai-Minh}, title = {The {Caffarelli{\textendash}Kohn{\textendash}Nirenberg} inequalities for radial functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1175--1189}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G7}, year = {2023}, doi = {10.5802/crmath.503}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.503/} }
TY - JOUR AU - Mallick, Arka AU - Nguyen, Hoai-Minh TI - The Caffarelli–Kohn–Nirenberg inequalities for radial functions JO - Comptes Rendus. Mathématique PY - 2023 SP - 1175 EP - 1189 VL - 361 IS - G7 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.503/ DO - 10.5802/crmath.503 LA - en ID - CRMATH_2023__361_G7_1175_0 ER -
%0 Journal Article %A Mallick, Arka %A Nguyen, Hoai-Minh %T The Caffarelli–Kohn–Nirenberg inequalities for radial functions %J Comptes Rendus. Mathématique %D 2023 %P 1175-1189 %V 361 %N G7 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.503/ %R 10.5802/crmath.503 %G en %F CRMATH_2023__361_G7_1175_0
Mallick, Arka; Nguyen, Hoai-Minh. The Caffarelli–Kohn–Nirenberg inequalities for radial functions. Comptes Rendus. Mathématique, Tome 361 (2023) no. G7, pp. 1175-1189. doi: 10.5802/crmath.503
Cité par Sources :