Analyse numérique
ϕ-FEM for the heat equation: optimal convergence on unfitted meshes in space
Comptes Rendus. Mathématique, Tome 361 (2023) no. G11, pp. 1699-1710

Voir la notice de l'article provenant de la source Numdam

Thanks to a finite element method, we solve numerically parabolic partial differential equations on complex domains by avoiding the mesh generation, using a regular background mesh, not fitting the domain and its real boundary exactly. Our technique follows the ϕ-FEM paradigm, which supposes that the domain is given by a level-set function. In this paper, we prove a priori error estimates in l 2 (H 1 ) and l (L 2 ) norms for an implicit Euler discretization in time. We give numerical illustrations to highlight the performances of ϕ-FEM, which combines optimal convergence accuracy, easy implementation process and fastness.

Reçu le :
Accepté le :
Accepté après révision le :
Publié le :
DOI : 10.5802/crmath.497

Duprez, Michel 1 ; Lleras, Vanessa 2 ; Lozinski, Alexei 3 ; Vuillemot, Killian 1, 2

1 MIMESIS team, Inria Nancy - Grand Est, MLMS team, Université de Strasbourg, 1 place de l’hôpital, 67000 Strasbourg, France
2 IMAG, Univ Montpellier, CNRS UMR 5149, 499-554 Rue du Truel, 34090 Montpellier, France
3 Université de Franche-Comté, Laboratoire de mathématiques de Besançon, UMR CNRS 6623, 16 route de Gray, 25030 Besançon Cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G11_1699_0,
     author = {Duprez, Michel and Lleras, Vanessa and Lozinski, Alexei and Vuillemot, Killian},
     title = {$\phi ${-FEM} for the heat equation: optimal convergence on unfitted meshes in space},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1699--1710},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G11},
     year = {2023},
     doi = {10.5802/crmath.497},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.497/}
}
TY  - JOUR
AU  - Duprez, Michel
AU  - Lleras, Vanessa
AU  - Lozinski, Alexei
AU  - Vuillemot, Killian
TI  - $\phi $-FEM for the heat equation: optimal convergence on unfitted meshes in space
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1699
EP  - 1710
VL  - 361
IS  - G11
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.497/
DO  - 10.5802/crmath.497
LA  - en
ID  - CRMATH_2023__361_G11_1699_0
ER  - 
%0 Journal Article
%A Duprez, Michel
%A Lleras, Vanessa
%A Lozinski, Alexei
%A Vuillemot, Killian
%T $\phi $-FEM for the heat equation: optimal convergence on unfitted meshes in space
%J Comptes Rendus. Mathématique
%D 2023
%P 1699-1710
%V 361
%N G11
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.497/
%R 10.5802/crmath.497
%G en
%F CRMATH_2023__361_G11_1699_0
Duprez, Michel; Lleras, Vanessa; Lozinski, Alexei; Vuillemot, Killian. $\phi $-FEM for the heat equation: optimal convergence on unfitted meshes in space. Comptes Rendus. Mathématique, Tome 361 (2023) no. G11, pp. 1699-1710. doi: 10.5802/crmath.497

Cité par Sources :