Voir la notice de l'article provenant de la source Numdam
Let and be independent variance-gamma random variables with zero location parameter; then the exact probability density function of the ratio is derived. Some basic distributional properties are also derived, including identification of parameter regimes under which the density is bounded, asymptotic approximations of tail probabilities, and fractional moments; in particular, we see that the mean is undefined. In the case that and are independent symmetric variance-gamma random variables, an exact formula is also given for the cumulative distribution function of the ratio .
Gaunt, Robert E. 1 ; Li, Siqi 1
@article{CRMATH_2023__361_G7_1151_0, author = {Gaunt, Robert E. and Li, Siqi}, title = {The variance-gamma ratio distribution}, journal = {Comptes Rendus. Math\'ematique}, pages = {1151--1161}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G7}, year = {2023}, doi = {10.5802/crmath.495}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.495/} }
TY - JOUR AU - Gaunt, Robert E. AU - Li, Siqi TI - The variance-gamma ratio distribution JO - Comptes Rendus. Mathématique PY - 2023 SP - 1151 EP - 1161 VL - 361 IS - G7 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.495/ DO - 10.5802/crmath.495 LA - en ID - CRMATH_2023__361_G7_1151_0 ER -
%0 Journal Article %A Gaunt, Robert E. %A Li, Siqi %T The variance-gamma ratio distribution %J Comptes Rendus. Mathématique %D 2023 %P 1151-1161 %V 361 %N G7 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.495/ %R 10.5802/crmath.495 %G en %F CRMATH_2023__361_G7_1151_0
Gaunt, Robert E.; Li, Siqi. The variance-gamma ratio distribution. Comptes Rendus. Mathématique, Tome 361 (2023) no. G7, pp. 1151-1161. doi: 10.5802/crmath.495
Cité par Sources :