Voir la notice de l'article provenant de la source Numdam
We study polynomials with complex coefficients which are nondegenerate in two senses, one of Kouchnirenko and the other with respect to its Newton polyhedron, through data on contact loci and motivic nearby cycles. Introducing an explicit description of these quantities we can answer in part the question concerning the motivic nearby cycles of restriction functions in the context of Newton nondegenerate polynomials. Furthermore, in the nondegeneracy in the sense of Kouchnirenko, we give calculations on cohomology groups of the contact loci.
Lê, Quy Thuong 1, 2 ; Nguyen, Tat Thang 3
@article{CRMATH_2023__361_G8_1249_0, author = {L\^e, Quy Thuong and Nguyen, Tat Thang}, title = {Geometry of nondegenerate polynomials: {Motivic} nearby cycles and {Cohomology} of contact loci}, journal = {Comptes Rendus. Math\'ematique}, pages = {1249--1266}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G8}, year = {2023}, doi = {10.5802/crmath.492}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.492/} }
TY - JOUR AU - Lê, Quy Thuong AU - Nguyen, Tat Thang TI - Geometry of nondegenerate polynomials: Motivic nearby cycles and Cohomology of contact loci JO - Comptes Rendus. Mathématique PY - 2023 SP - 1249 EP - 1266 VL - 361 IS - G8 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.492/ DO - 10.5802/crmath.492 LA - en ID - CRMATH_2023__361_G8_1249_0 ER -
%0 Journal Article %A Lê, Quy Thuong %A Nguyen, Tat Thang %T Geometry of nondegenerate polynomials: Motivic nearby cycles and Cohomology of contact loci %J Comptes Rendus. Mathématique %D 2023 %P 1249-1266 %V 361 %N G8 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.492/ %R 10.5802/crmath.492 %G en %F CRMATH_2023__361_G8_1249_0
Lê, Quy Thuong; Nguyen, Tat Thang. Geometry of nondegenerate polynomials: Motivic nearby cycles and Cohomology of contact loci. Comptes Rendus. Mathématique, Tome 361 (2023) no. G8, pp. 1249-1266. doi: 10.5802/crmath.492
Cité par Sources :