Voir la notice de l'article provenant de la source Numdam
In this note we prove a sharp reverse weak estimate for Riesz potentials
where . We also consider the behavior of the best constant of weak type estimate for Riesz potentials, and we prove as .
Huang, Liang 1 ; Tang, Hanli 2
@article{CRMATH_2023__361_G7_1123_0, author = {Huang, Liang and Tang, Hanli}, title = {Optimal weak estimates for {Riesz} potentials}, journal = {Comptes Rendus. Math\'ematique}, pages = {1123--1131}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G7}, year = {2023}, doi = {10.5802/crmath.479}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.479/} }
TY - JOUR AU - Huang, Liang AU - Tang, Hanli TI - Optimal weak estimates for Riesz potentials JO - Comptes Rendus. Mathématique PY - 2023 SP - 1123 EP - 1131 VL - 361 IS - G7 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.479/ DO - 10.5802/crmath.479 LA - en ID - CRMATH_2023__361_G7_1123_0 ER -
%0 Journal Article %A Huang, Liang %A Tang, Hanli %T Optimal weak estimates for Riesz potentials %J Comptes Rendus. Mathématique %D 2023 %P 1123-1131 %V 361 %N G7 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.479/ %R 10.5802/crmath.479 %G en %F CRMATH_2023__361_G7_1123_0
Huang, Liang; Tang, Hanli. Optimal weak estimates for Riesz potentials. Comptes Rendus. Mathématique, Tome 361 (2023) no. G7, pp. 1123-1131. doi: 10.5802/crmath.479
Cité par Sources :