Théorie des opérateurs
Integral representation of vertical operators on the Bergman space over the upper half-plane
Comptes Rendus. Mathématique, Tome 361 (2023) no. G10, pp. 1593-1604

Voir la notice de l'article provenant de la source Numdam

Let Π denote the upper half-plane. In this article, we prove that every vertical operator on the Bergman space 𝒜 2 (Π) over the upper half-plane can be uniquely represented as an integral operator of the form

S φ f(z)= Π f(w)φ(z-w ¯)dμ(w),f𝒜 2 (Π),zΠ,

where φ is an analytic function on Π given by

φ(z)= + ξσ(ξ)e izξ dξ,zΠ

for some σL ( + ). Here dμ(w) is the Lebesgue measure on Π. Later on, with the help of above integral representation, we obtain various operator theoretic properties of the vertical operators.

Also, we give integral representation of the form S φ for all the operators in the C * -algebra generated by Toeplitz operators T a with vertical symbols aL (Π).

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.477
Classification : 30H20, 47A15, 47B35, 47G10
Keywords: Bergman space, multiplication operator, reducing subspace, Toeplitz operator

Bais, Shubham R. 1 ; Venku Naidu, D. 1 ; Mohan, Pinlodi 1

1 Department of Mathematics, Indian Institute of Technology – Hyderabad, Kandi, Sangareddy, Telangana, India 502 284.
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G10_1593_0,
     author = {Bais, Shubham R. and Venku Naidu, D. and Mohan, Pinlodi},
     title = {Integral representation of vertical operators on the {Bergman} space over the upper half-plane},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1593--1604},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G10},
     year = {2023},
     doi = {10.5802/crmath.477},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.477/}
}
TY  - JOUR
AU  - Bais, Shubham R.
AU  - Venku Naidu, D.
AU  - Mohan, Pinlodi
TI  - Integral representation of vertical operators on the Bergman space over the upper half-plane
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1593
EP  - 1604
VL  - 361
IS  - G10
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.477/
DO  - 10.5802/crmath.477
LA  - en
ID  - CRMATH_2023__361_G10_1593_0
ER  - 
%0 Journal Article
%A Bais, Shubham R.
%A Venku Naidu, D.
%A Mohan, Pinlodi
%T Integral representation of vertical operators on the Bergman space over the upper half-plane
%J Comptes Rendus. Mathématique
%D 2023
%P 1593-1604
%V 361
%N G10
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.477/
%R 10.5802/crmath.477
%G en
%F CRMATH_2023__361_G10_1593_0
Bais, Shubham R.; Venku Naidu, D.; Mohan, Pinlodi. Integral representation of vertical operators on the Bergman space over the upper half-plane. Comptes Rendus. Mathématique, Tome 361 (2023) no. G10, pp. 1593-1604. doi: 10.5802/crmath.477

Cité par Sources :