Voir la notice de l'article provenant de la source Numdam
Let denote the upper half-plane. In this article, we prove that every vertical operator on the Bergman space over the upper half-plane can be uniquely represented as an integral operator of the form
where is an analytic function on given by
for some . Here is the Lebesgue measure on . Later on, with the help of above integral representation, we obtain various operator theoretic properties of the vertical operators.
Also, we give integral representation of the form for all the operators in the -algebra generated by Toeplitz operators with vertical symbols .
Bais, Shubham R. 1 ; Venku Naidu, D. 1 ; Mohan, Pinlodi 1
@article{CRMATH_2023__361_G10_1593_0, author = {Bais, Shubham R. and Venku Naidu, D. and Mohan, Pinlodi}, title = {Integral representation of vertical operators on the {Bergman} space over the upper half-plane}, journal = {Comptes Rendus. Math\'ematique}, pages = {1593--1604}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G10}, year = {2023}, doi = {10.5802/crmath.477}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.477/} }
TY - JOUR AU - Bais, Shubham R. AU - Venku Naidu, D. AU - Mohan, Pinlodi TI - Integral representation of vertical operators on the Bergman space over the upper half-plane JO - Comptes Rendus. Mathématique PY - 2023 SP - 1593 EP - 1604 VL - 361 IS - G10 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.477/ DO - 10.5802/crmath.477 LA - en ID - CRMATH_2023__361_G10_1593_0 ER -
%0 Journal Article %A Bais, Shubham R. %A Venku Naidu, D. %A Mohan, Pinlodi %T Integral representation of vertical operators on the Bergman space over the upper half-plane %J Comptes Rendus. Mathématique %D 2023 %P 1593-1604 %V 361 %N G10 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.477/ %R 10.5802/crmath.477 %G en %F CRMATH_2023__361_G10_1593_0
Bais, Shubham R.; Venku Naidu, D.; Mohan, Pinlodi. Integral representation of vertical operators on the Bergman space over the upper half-plane. Comptes Rendus. Mathématique, Tome 361 (2023) no. G10, pp. 1593-1604. doi: 10.5802/crmath.477
Cité par Sources :