Voir la notice de l'article provenant de la source Numdam
In this note we show that the gradient estimate of the heat semigroup, or more precisely the H.-Q. Li inequality, is preserved under tensorization, some suitable group epimorphism, and central sum. We also establish the Riemannian counterpart of the H.-Q. Li inequality. As a byproduct, we provide a simpler proof of the fact that the constant in H.-Q. Li inequality is strictly larger than .
Zhang, Ye 1
@article{CRMATH_2023__361_G7_1107_0, author = {Zhang, Ye}, title = {On the {H.-Q.} {Li} inequality on step-two {Carnot} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {1107--1114}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G7}, year = {2023}, doi = {10.5802/crmath.475}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.475/} }
TY - JOUR AU - Zhang, Ye TI - On the H.-Q. Li inequality on step-two Carnot groups JO - Comptes Rendus. Mathématique PY - 2023 SP - 1107 EP - 1114 VL - 361 IS - G7 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.475/ DO - 10.5802/crmath.475 LA - en ID - CRMATH_2023__361_G7_1107_0 ER -
%0 Journal Article %A Zhang, Ye %T On the H.-Q. Li inequality on step-two Carnot groups %J Comptes Rendus. Mathématique %D 2023 %P 1107-1114 %V 361 %N G7 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.475/ %R 10.5802/crmath.475 %G en %F CRMATH_2023__361_G7_1107_0
Zhang, Ye. On the H.-Q. Li inequality on step-two Carnot groups. Comptes Rendus. Mathématique, Tome 361 (2023) no. G7, pp. 1107-1114. doi: 10.5802/crmath.475
Cité par Sources :