Statistiques
Exact Posterior distribution of risk ratio in the Kumaraswamy–Binomial model
Comptes Rendus. Mathématique, Tome 361 (2023) no. G6, pp. 1063-1069

Voir la notice de l'article provenant de la source Numdam

In categorical data analysis, the 2×2 contingency tables are commonly used to assess the association between groups and responses, this is achieved by using some measures of association, such as the contingency coefficient, odds ratio, risk relative, etc. In a Bayesian approach, the risk ratio is modeled according to a Beta-Binomial model, which has exact posterior distribution, due to the conjugacy property of the model. In this work, we provide the exact posterior distribution of the relative risk for the non-conjugate Kumaraswamy–Binomial model. The results are based on special functions and we give exact expressions for the posterior density, moments, and cumulative distribution. An example illustrates the theory.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.469
Classification : 62C10

Andrade, Jose A. A. 1 ; Rathie, Pushpa 2

1 Department of Statistics and Applied Mathematics, Federal University of Ceara, 60455-670, Fortaleza-Ce, Brazil
2 Department of Statistics, University of Brasilia, 70910-900, Brasilia-DF, Brazil
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G6_1063_0,
     author = {Andrade, Jose A. A. and Rathie, Pushpa},
     title = {Exact {Posterior} distribution of risk ratio in the {Kumaraswamy{\textendash}Binomial} model},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1063--1069},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G6},
     year = {2023},
     doi = {10.5802/crmath.469},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.469/}
}
TY  - JOUR
AU  - Andrade, Jose A. A.
AU  - Rathie, Pushpa
TI  - Exact Posterior distribution of risk ratio in the Kumaraswamy–Binomial model
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1063
EP  - 1069
VL  - 361
IS  - G6
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.469/
DO  - 10.5802/crmath.469
LA  - en
ID  - CRMATH_2023__361_G6_1063_0
ER  - 
%0 Journal Article
%A Andrade, Jose A. A.
%A Rathie, Pushpa
%T Exact Posterior distribution of risk ratio in the Kumaraswamy–Binomial model
%J Comptes Rendus. Mathématique
%D 2023
%P 1063-1069
%V 361
%N G6
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.469/
%R 10.5802/crmath.469
%G en
%F CRMATH_2023__361_G6_1063_0
Andrade, Jose A. A.; Rathie, Pushpa. Exact Posterior distribution of risk ratio in the Kumaraswamy–Binomial model. Comptes Rendus. Mathématique, Tome 361 (2023) no. G6, pp. 1063-1069. doi: 10.5802/crmath.469

Cité par Sources :