Systèmes dynamiques
Generalized logistic equation on Networks
Comptes Rendus. Mathématique, Tome 361 (2023) no. G5, pp. 911-934

Voir la notice de l'article provenant de la source Numdam

In this paper, we consider a general single species model in a heterogeneous environment of n patches (n2), where each patch follows a generalized logistic law. First, we prove the global stability of the model. Second, in the case of perfect mixing, i.e. when the migration rate tends to infinity, the total population follows a generalized logistic law with a carrying capacity which in general is different from the sum of the n carrying capacities. Next, we give some properties of the total equilibrium population and we compute its derivative at no dispersal. In some particular cases, we determine the conditions under which fragmentation and migration can lead to a total equilibrium population which might be greater or smaller than the sum of the n carrying capacities. Finally, we study an example of two-patch model where the first patch follows a logistic law and the second a Richard’s law, we give a complete classification of the model parameter space as to whether dispersal is beneficial or detrimental to the sum of two carrying capacities.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.460
Classification : 37N25, 92D25, 34D23, 34D15

Elbetch, Bilel 1

1 Department of Mathematics, University Dr. Moulay Tahar of Saida, Algeria
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G5_911_0,
     author = {Elbetch, Bilel},
     title = {Generalized logistic equation on {Networks}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {911--934},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G5},
     year = {2023},
     doi = {10.5802/crmath.460},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.460/}
}
TY  - JOUR
AU  - Elbetch, Bilel
TI  - Generalized logistic equation on Networks
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 911
EP  - 934
VL  - 361
IS  - G5
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.460/
DO  - 10.5802/crmath.460
LA  - en
ID  - CRMATH_2023__361_G5_911_0
ER  - 
%0 Journal Article
%A Elbetch, Bilel
%T Generalized logistic equation on Networks
%J Comptes Rendus. Mathématique
%D 2023
%P 911-934
%V 361
%N G5
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.460/
%R 10.5802/crmath.460
%G en
%F CRMATH_2023__361_G5_911_0
Elbetch, Bilel. Generalized logistic equation on Networks. Comptes Rendus. Mathématique, Tome 361 (2023) no. G5, pp. 911-934. doi: 10.5802/crmath.460

Cité par Sources :