Théorie des nombres
A new proof of Nishioka’s theorem in Mahler’s method
Comptes Rendus. Mathématique, Tome 361 (2023) no. G6, pp. 1011-1028

Voir la notice de l'article provenant de la source Numdam

In a recent work [3], the authors established new results about general linear Mahler systems in several variables from the perspective of transcendental number theory, such as a multivariate extension of Nishioka’s theorem. Working with functions of several variables and with different Mahler transformations leads to a number of complications, including the need to prove a general vanishing theorem and to use tools from ergodic Ramsey theory and Diophantine approximation (e.g., a variant of the p-adic Schmidt subspace theorem). These complications make the proof of the main results proved in [3] rather intricate. In this article, we describe our new approach in the special case of linear Mahler systems in one variable. This leads to a new, elementary, and self-contained proof of Nishioka’s theorem, as well as of the lifting theorem more recently obtained by Philippon [23] and the authors [1]. Though the general strategy remains the same as in [3], the proof turns out to be greatly simplified. Beyond its own interest, we hope that reading this article will facilitate the understanding of the proof of the main results obtained in [3].

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.458

Adamczewski, Boris 1 ; Faverjon, Colin 1

1 Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 69622 Villeurbanne Cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G6_1011_0,
     author = {Adamczewski, Boris and Faverjon, Colin},
     title = {A new proof of {Nishioka{\textquoteright}s} theorem in {Mahler{\textquoteright}s} method},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1011--1028},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G6},
     year = {2023},
     doi = {10.5802/crmath.458},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.458/}
}
TY  - JOUR
AU  - Adamczewski, Boris
AU  - Faverjon, Colin
TI  - A new proof of Nishioka’s theorem in Mahler’s method
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1011
EP  - 1028
VL  - 361
IS  - G6
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.458/
DO  - 10.5802/crmath.458
LA  - en
ID  - CRMATH_2023__361_G6_1011_0
ER  - 
%0 Journal Article
%A Adamczewski, Boris
%A Faverjon, Colin
%T A new proof of Nishioka’s theorem in Mahler’s method
%J Comptes Rendus. Mathématique
%D 2023
%P 1011-1028
%V 361
%N G6
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.458/
%R 10.5802/crmath.458
%G en
%F CRMATH_2023__361_G6_1011_0
Adamczewski, Boris; Faverjon, Colin. A new proof of Nishioka’s theorem in Mahler’s method. Comptes Rendus. Mathématique, Tome 361 (2023) no. G6, pp. 1011-1028. doi: 10.5802/crmath.458

Cité par Sources :