Voir la notice de l'article provenant de la source Numdam
In this article, we completely characterize absolutely norm attaining Hankel operators and absolutely minimum attaining Toeplitz operators. We also improve [19, Theorem 2.1], by characterizing the absolutely norm attaining Toeplitz operator in terms of the symbol .
Ramesh, Golla 1 ; Sequeira, Shanola S. 1
@article{CRMATH_2023__361_G6_973_0, author = {Ramesh, Golla and Sequeira, Shanola S.}, title = {Absolutely minimum attaining {Toeplitz} and absolutely norm attaining {Hankel} operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {973--977}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G6}, year = {2023}, doi = {10.5802/crmath.457}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.457/} }
TY - JOUR AU - Ramesh, Golla AU - Sequeira, Shanola S. TI - Absolutely minimum attaining Toeplitz and absolutely norm attaining Hankel operators JO - Comptes Rendus. Mathématique PY - 2023 SP - 973 EP - 977 VL - 361 IS - G6 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.457/ DO - 10.5802/crmath.457 LA - en ID - CRMATH_2023__361_G6_973_0 ER -
%0 Journal Article %A Ramesh, Golla %A Sequeira, Shanola S. %T Absolutely minimum attaining Toeplitz and absolutely norm attaining Hankel operators %J Comptes Rendus. Mathématique %D 2023 %P 973-977 %V 361 %N G6 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.457/ %R 10.5802/crmath.457 %G en %F CRMATH_2023__361_G6_973_0
Ramesh, Golla; Sequeira, Shanola S. Absolutely minimum attaining Toeplitz and absolutely norm attaining Hankel operators. Comptes Rendus. Mathématique, Tome 361 (2023) no. G6, pp. 973-977. doi: 10.5802/crmath.457
Cité par Sources :