Voir la notice de l'article provenant de la source Numdam
In this paper, we study the alternating Euler -sums and -sums, which are infinite series involving (alternating) odd harmonic numbers, and have similar forms and close relations to the Dirichlet beta functions. By using the method of residue computations, we establish the explicit formulas for the (alternating) linear and quadratic Euler -sums and -sums, from which, the parity theorems of Hoffman’s double and triple -values and Kaneko–Tsumura’s double and triple -values are further obtained. As supplements, we also show that the linear -sums and -sums are expressible in terms of colored multiple zeta values. Some interesting consequences and illustrative examples are presented.
Xu, Ce 1 ; Wang, Weiping 2
@article{CRMATH_2023__361_G6_979_0, author = {Xu, Ce and Wang, Weiping}, title = {Dirichlet type extensions of {Euler} sums}, journal = {Comptes Rendus. Math\'ematique}, pages = {979--1010}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G6}, year = {2023}, doi = {10.5802/crmath.453}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.453/} }
TY - JOUR AU - Xu, Ce AU - Wang, Weiping TI - Dirichlet type extensions of Euler sums JO - Comptes Rendus. Mathématique PY - 2023 SP - 979 EP - 1010 VL - 361 IS - G6 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.453/ DO - 10.5802/crmath.453 LA - en ID - CRMATH_2023__361_G6_979_0 ER -
%0 Journal Article %A Xu, Ce %A Wang, Weiping %T Dirichlet type extensions of Euler sums %J Comptes Rendus. Mathématique %D 2023 %P 979-1010 %V 361 %N G6 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.453/ %R 10.5802/crmath.453 %G en %F CRMATH_2023__361_G6_979_0
Xu, Ce; Wang, Weiping. Dirichlet type extensions of Euler sums. Comptes Rendus. Mathématique, Tome 361 (2023) no. G6, pp. 979-1010. doi: 10.5802/crmath.453
Cité par Sources :