Théorie des nombres
Dirichlet type extensions of Euler sums
Comptes Rendus. Mathématique, Tome 361 (2023) no. G6, pp. 979-1010

Voir la notice de l'article provenant de la source Numdam

In this paper, we study the alternating Euler T-sums and S ˜-sums, which are infinite series involving (alternating) odd harmonic numbers, and have similar forms and close relations to the Dirichlet beta functions. By using the method of residue computations, we establish the explicit formulas for the (alternating) linear and quadratic Euler T-sums and S ˜-sums, from which, the parity theorems of Hoffman’s double and triple t-values and Kaneko–Tsumura’s double and triple T-values are further obtained. As supplements, we also show that the linear T-sums and S ˜-sums are expressible in terms of colored multiple zeta values. Some interesting consequences and illustrative examples are presented.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.453
Classification : 11A07, 11M32, 40A25

Xu, Ce 1 ; Wang, Weiping 2

1 School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, P.R. China
2 School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G6_979_0,
     author = {Xu, Ce and Wang, Weiping},
     title = {Dirichlet type extensions of {Euler} sums},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {979--1010},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G6},
     year = {2023},
     doi = {10.5802/crmath.453},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.453/}
}
TY  - JOUR
AU  - Xu, Ce
AU  - Wang, Weiping
TI  - Dirichlet type extensions of Euler sums
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 979
EP  - 1010
VL  - 361
IS  - G6
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.453/
DO  - 10.5802/crmath.453
LA  - en
ID  - CRMATH_2023__361_G6_979_0
ER  - 
%0 Journal Article
%A Xu, Ce
%A Wang, Weiping
%T Dirichlet type extensions of Euler sums
%J Comptes Rendus. Mathématique
%D 2023
%P 979-1010
%V 361
%N G6
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.453/
%R 10.5802/crmath.453
%G en
%F CRMATH_2023__361_G6_979_0
Xu, Ce; Wang, Weiping. Dirichlet type extensions of Euler sums. Comptes Rendus. Mathématique, Tome 361 (2023) no. G6, pp. 979-1010. doi: 10.5802/crmath.453

Cité par Sources :