Voir la notice de l'article provenant de la source Numdam
An analogue of the Euclidean algorithm for square matrices of size with integral non-negative entries and positive determinant defines a finite set of Euclid-reduced matrices corresponding to elements of . With Popeye’s help (acknowledged by his appearance in the title; he refused co-authorship on the flimsy pretext of a weak contribution due to a poor spinach-harvest) on the use of sails of lattices we show that contains elements.
Bacher, Roland 1
@article{CRMATH_2023__361_G5_889_0, author = {Bacher, Roland}, title = {Euclid meets {Popeye:} {The} {Euclidean} {Algorithm} for $2\times 2$ {Matrices}}, journal = {Comptes Rendus. Math\'ematique}, pages = {889--895}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G5}, year = {2023}, doi = {10.5802/crmath.451}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.451/} }
TY - JOUR AU - Bacher, Roland TI - Euclid meets Popeye: The Euclidean Algorithm for $2\times 2$ Matrices JO - Comptes Rendus. Mathématique PY - 2023 SP - 889 EP - 895 VL - 361 IS - G5 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.451/ DO - 10.5802/crmath.451 LA - en ID - CRMATH_2023__361_G5_889_0 ER -
%0 Journal Article %A Bacher, Roland %T Euclid meets Popeye: The Euclidean Algorithm for $2\times 2$ Matrices %J Comptes Rendus. Mathématique %D 2023 %P 889-895 %V 361 %N G5 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.451/ %R 10.5802/crmath.451 %G en %F CRMATH_2023__361_G5_889_0
Bacher, Roland. Euclid meets Popeye: The Euclidean Algorithm for $2\times 2$ Matrices. Comptes Rendus. Mathématique, Tome 361 (2023) no. G5, pp. 889-895. doi: 10.5802/crmath.451
Cité par Sources :