Voir la notice de l'article provenant de la source Numdam
A well-known result of Fulton–Lazarsfeld ensures the connectedness of degeneracy loci under an ampleness condition. We extend it to positive characteristic, along with the variants for degeneracy loci of symmetric and alternating maps of even rank, due to Tu in characteristic zero. The proof uses the explicit determination of the top étale cohomology group of an algebraic variety, a result communicated by Esnault.
Lodh, Rémi 1
@article{CRMATH_2023__361_G6_959_0, author = {Lodh, R\'emi}, title = {The connectedness of degeneracy loci in positive characteristic}, journal = {Comptes Rendus. Math\'ematique}, pages = {959--964}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G6}, year = {2023}, doi = {10.5802/crmath.448}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.448/} }
TY - JOUR AU - Lodh, Rémi TI - The connectedness of degeneracy loci in positive characteristic JO - Comptes Rendus. Mathématique PY - 2023 SP - 959 EP - 964 VL - 361 IS - G6 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.448/ DO - 10.5802/crmath.448 LA - en ID - CRMATH_2023__361_G6_959_0 ER -
%0 Journal Article %A Lodh, Rémi %T The connectedness of degeneracy loci in positive characteristic %J Comptes Rendus. Mathématique %D 2023 %P 959-964 %V 361 %N G6 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.448/ %R 10.5802/crmath.448 %G en %F CRMATH_2023__361_G6_959_0
Lodh, Rémi. The connectedness of degeneracy loci in positive characteristic. Comptes Rendus. Mathématique, Tome 361 (2023) no. G6, pp. 959-964. doi: 10.5802/crmath.448
Cité par Sources :