Combinatoire, Probabilités
Dimension reduction for maximum matchings and the Fastest Mixing Markov Chain
Comptes Rendus. Mathématique, Tome 361 (2023) no. G5, pp. 869-876

Voir la notice de l'article provenant de la source Numdam

Let G=(V,E) be an undirected graph with maximum degree Δ and vertex conductance Ψ * (G). We show that there exists a symmetric, stochastic matrix P, with off-diagonal entries supported on E, whose spectral gap γ * (P) satisfies

Ψ * (G) 2 /logΔγ * (P)Ψ * (G).

Our bound is optimal under the Small Set Expansion Hypothesis, and answers a question of Olesker-Taylor and Zanetti, who obtained such a result with logΔ replaced by log|V|.

In order to obtain our result, we show how to embed a negative-type semi-metric d defined on V into a negative-type semi-metric d supported in O(logΔ) , such that the (fractional) matching number of the weighted graph (V,E,d) is approximately equal to that of (V,E,d ).

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.447

Jain, Vishesh 1 ; Pham, Huy 2 ; Vuong, Thuy-Duong 3

1 Department of Mathematics, Statistics, and Computer Science, University of Illinois Chicago
2 Department of Mathematics, Stanford University
3 Department of Computer Science, Stanford University
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G5_869_0,
     author = {Jain, Vishesh and Pham, Huy and Vuong, Thuy-Duong},
     title = {Dimension reduction for maximum matchings and the {Fastest} {Mixing} {Markov} {Chain}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {869--876},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G5},
     year = {2023},
     doi = {10.5802/crmath.447},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.447/}
}
TY  - JOUR
AU  - Jain, Vishesh
AU  - Pham, Huy
AU  - Vuong, Thuy-Duong
TI  - Dimension reduction for maximum matchings and the Fastest Mixing Markov Chain
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 869
EP  - 876
VL  - 361
IS  - G5
PB  - Académie des sciences, Paris
UR  - http://geodesic.mathdoc.fr/articles/10.5802/crmath.447/
DO  - 10.5802/crmath.447
LA  - en
ID  - CRMATH_2023__361_G5_869_0
ER  - 
%0 Journal Article
%A Jain, Vishesh
%A Pham, Huy
%A Vuong, Thuy-Duong
%T Dimension reduction for maximum matchings and the Fastest Mixing Markov Chain
%J Comptes Rendus. Mathématique
%D 2023
%P 869-876
%V 361
%N G5
%I Académie des sciences, Paris
%U http://geodesic.mathdoc.fr/articles/10.5802/crmath.447/
%R 10.5802/crmath.447
%G en
%F CRMATH_2023__361_G5_869_0
Jain, Vishesh; Pham, Huy; Vuong, Thuy-Duong. Dimension reduction for maximum matchings and the Fastest Mixing Markov Chain. Comptes Rendus. Mathématique, Tome 361 (2023) no. G5, pp. 869-876. doi: 10.5802/crmath.447

Cité par Sources :