Voir la notice de l'article provenant de la source Numdam
Let be an undirected graph with maximum degree and vertex conductance . We show that there exists a symmetric, stochastic matrix , with off-diagonal entries supported on , whose spectral gap satisfies
Our bound is optimal under the Small Set Expansion Hypothesis, and answers a question of Olesker-Taylor and Zanetti, who obtained such a result with replaced by .
In order to obtain our result, we show how to embed a negative-type semi-metric defined on into a negative-type semi-metric supported in , such that the (fractional) matching number of the weighted graph is approximately equal to that of .
Jain, Vishesh 1 ; Pham, Huy 2 ; Vuong, Thuy-Duong 3
@article{CRMATH_2023__361_G5_869_0, author = {Jain, Vishesh and Pham, Huy and Vuong, Thuy-Duong}, title = {Dimension reduction for maximum matchings and the {Fastest} {Mixing} {Markov} {Chain}}, journal = {Comptes Rendus. Math\'ematique}, pages = {869--876}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G5}, year = {2023}, doi = {10.5802/crmath.447}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.447/} }
TY - JOUR AU - Jain, Vishesh AU - Pham, Huy AU - Vuong, Thuy-Duong TI - Dimension reduction for maximum matchings and the Fastest Mixing Markov Chain JO - Comptes Rendus. Mathématique PY - 2023 SP - 869 EP - 876 VL - 361 IS - G5 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.447/ DO - 10.5802/crmath.447 LA - en ID - CRMATH_2023__361_G5_869_0 ER -
%0 Journal Article %A Jain, Vishesh %A Pham, Huy %A Vuong, Thuy-Duong %T Dimension reduction for maximum matchings and the Fastest Mixing Markov Chain %J Comptes Rendus. Mathématique %D 2023 %P 869-876 %V 361 %N G5 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.447/ %R 10.5802/crmath.447 %G en %F CRMATH_2023__361_G5_869_0
Jain, Vishesh; Pham, Huy; Vuong, Thuy-Duong. Dimension reduction for maximum matchings and the Fastest Mixing Markov Chain. Comptes Rendus. Mathématique, Tome 361 (2023) no. G5, pp. 869-876. doi: 10.5802/crmath.447
Cité par Sources :