Voir la notice de l'article provenant de la source Numdam
The classical -analogue of the integers was recently generalized by Morier-Genoud and Ovsienko to give -analogues of rational numbers. Some combinatorial interpretations are already known, namely as the rank generating functions for certain partially ordered sets. We give a new interpretation, showing that the numerators of -rationals count the sizes of certain varieties over finite fields, which are unions of open Schubert cells in some Grassmannian.
Ovenhouse, Nicholas 1
@article{CRMATH_2023__361_G4_807_0, author = {Ovenhouse, Nicholas}, title = {$q${-Rationals} and {Finite} {Schubert} {Varieties}}, journal = {Comptes Rendus. Math\'ematique}, pages = {807--818}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, number = {G4}, year = {2023}, doi = {10.5802/crmath.446}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/crmath.446/} }
TY - JOUR AU - Ovenhouse, Nicholas TI - $q$-Rationals and Finite Schubert Varieties JO - Comptes Rendus. Mathématique PY - 2023 SP - 807 EP - 818 VL - 361 IS - G4 PB - Académie des sciences, Paris UR - http://geodesic.mathdoc.fr/articles/10.5802/crmath.446/ DO - 10.5802/crmath.446 LA - en ID - CRMATH_2023__361_G4_807_0 ER -
%0 Journal Article %A Ovenhouse, Nicholas %T $q$-Rationals and Finite Schubert Varieties %J Comptes Rendus. Mathématique %D 2023 %P 807-818 %V 361 %N G4 %I Académie des sciences, Paris %U http://geodesic.mathdoc.fr/articles/10.5802/crmath.446/ %R 10.5802/crmath.446 %G en %F CRMATH_2023__361_G4_807_0
Ovenhouse, Nicholas. $q$-Rationals and Finite Schubert Varieties. Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 807-818. doi: 10.5802/crmath.446
Cité par Sources :